Back to Study material
SA

Unit-2

Analysis of Beams and Frames

 


Analysis of beam and rectangular portal frames with indeterminacy up to second degrees

Case I):

1. Fixed beam carrying udl throughout:

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\6.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\7.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\8.JPG

Area & (A) @B

For fig (i) ……………..

(-)      (L) …………..(i)

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\9.JPG

(A) @B = 

= (-)     +  

=    (-)  ……………. (II)

Fig (2)

A =       (L)  =

AB =  =

 

As per principle (1)

Total area =0

+  =0

  = ……….(I)

 

As per principle (2)

@B =0

  + =0

( ……………. (2) 

From (1),

MB =   = MA put in (2)

2MA + MA +

MA =

MA = 

MB = 

 

2. Fixed beam carrying udl end moments are 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\10.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\11.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\12.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\13.JPG

 

Case (II):

Fixed beam with point load.

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\14.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\15.JPG

Area &@B   for free BMD

A =    (L) 

A =

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\16.JPG

 

@B   =  

                  =  

As per principle (1)

Total Area =0

(L) + =0

MA + MB = ……….. (1)

As per principle (2)

@B   = 0

(-) (2MA+2MB) +  =0

 

2MA+2MB =  (L + b) ………… (2)

From (1)

MB = MA   (Put in eqnc2)

2MA +    (L +b)

MA =

=

MA =

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\17.JPG

Special cases

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\18.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\19.JPG  

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\20.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\21.JPG

 

Case (III)

Fixed beam carrying partial udl

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\22.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\23.JPG

 

      = 

MA = 

MB =

      =

       =

       =

       =

MB=

 

Special case:

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\24.JPG

 

MA =

           =

    MB = 

= 

    MB = 

Case (IV)

 Fixed beam with partial uvl

 Diagram:

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\25.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\26.JPG

 

MB =

 

      = w - 

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\28.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\27.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\29.JPG

 

Case (V)

Fixed beam with sinking of support (A)

 

        

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\31.JPG

As per principle   (1)

 

Area of     M     dia. = 0

                  EI

(-)      MA + MB   (L)   = 0

              2 EI

MA + MB = 0

MA = - MB     (1)

As per principle     (2)

(AX)  @ B =0

tBA = (AX) @ B =   

(-) L2 (2MA + MB) = (-) 

6EI

3M – LM2 = ………..From (1)

 

Final Fig.

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\33.JPG

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\32.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\34.JPG

 

Case (VI)

Fixed beam with rotational fielding

 

Diagram

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\35.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\31.JPG

i) Area M dia. = B

                      EI

 

(-1)       1     MA + MB (L)         = B

             EI           2

 

MA + MB= (-) 2EI (B)       (1)

                                      L

 

Area     M     xXB = tBA = 0

              EI

 

 

 (-)    L2      2MA + MB   = 0

                6EI

2MA + MB   = 0     (2)

 

From (1)

…………..

2MA = 2EI (B) - MA = 0

                L

  MA = 2EI    (B)

                   L

 

MB = 4 EI    (B)

              L

 

For rotation B anticlockwise

 

Diagram

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\36.JPG

(Both end moment & rotation clockwise)

 

Fixed beam with couple

DiagramC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\37.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\39.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\38.JPG

Area & (AX) (a) B

A1 =    1        mA + mB (L)

           EI              2

 

A2 =    1        1 x ax m   (a)

           EI       2                  L

 

=   ma2

               2LEI

 

A3 =     x b x (b)

 

      =    -     mb2

                  2 LEI

 

(A x) 1 (a) B =   (-)     L2 2mA + mB

                                   6 EI

 

(A x) 2 (a) B =   (-)    Ma2 b + 1 a

                                   2 LEI               3

 

 

(A x) 3 (a) B =   (-)    Mb2 2 b

                                   2 LEI      3

 

  = (-)   Mb3

                                  3 LEI

 

As per principle (1)

Total Area = 0

∑ A = 0

 

(-)   mA + mB (L)         +   ma2 - mb2   - 0

               2                              2L        2L

mA + mB (L) =   m (a2 – b2)

                  2    2L

mA+ mB = m (a-b)    (1)

                          L

 

(3) (Ax) (a)    B = 0

(-)   L2   (2 mA + mB) + ma2     b +     a - mb3          = 0

                   6                                 2L                   3     3L

 

 

     2MA + MB=      6 (m)       a2b+a  -   b3

                                   L2         2L    3       3L

 

2MA + MB = M     3a2b + a3 – 2b3

                        L                                                                            (2)

From (1),

MB= M (a-b) - MA  put in (2)

          L

 

2MA + M (a-b) – MA = M       3a2b + a3 – 2b3

             L                          L3

 

  MA = M      3a2b + a3 – 2b3       -    M (a-b)

                L3                                           L

 

 

Multiply &divide by ………….

MA = M         3a2b + a3 – 2b3 -(a-b)    ( ………..)

          L3

 

MA = M      3a2b + a3 – 2b3 -(a-b)    ( ………..)

          L3

 

      = M       2a2b – b3 – ab2

                     L3

            MA = MB (a – o)   (………….)

                       L3

 

MA = MB    (2 a-b)

           L3

MB =   M (a-b) - MB (2a-b)

             L                L2

 

MB = (-) MQ (2b – a)

                 L2

 

Note:

(Free end moment)

Show FEM in the direction of couple applied and after substituting a & b if answer is respective arrow shall be corrected sign changes.

 

Special case:

Couple at centre

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\41.JPG

 

B = 10mm (1)

E = 200 G pa

I = 8 x 106 mm4

EI = 1600 KN/M2

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\42.JPG

 

(1) FEM

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\43.JPG

MA1 = (-) MB1 = WL2 = 15 X 16 = 20 KNM

                              12             12

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\44.JPG

MA = MB 

Final  MA =?

  MB =?

 

MA = VB (4) – 1

  VA = 27

∑Fy = 0

VA /VA =

 

BMP

BMA= (-) 26 KNM

BMB = (-)19 KNM

BMC = 33 (2.2) – 26 – 15      (2.2)2

                                                     Z

  BMC = 10.3 KNM

 

 

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\45.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\46.JPG

BMP

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\47.JPG

 

(1)              FEM’S

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\48.JPG

 

 

MA1= (-) Mb (2a-b)

                   L2

                                 

= (-) 24 x 5 (1)                       

                     (8)2

 = (-) (1.875) KNM

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\49.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\50.JPG

 

 

MA1 =

=

MA2=

MA2=

MA2 = 44.92 KNM

MB2 = (-) 56.320 KNM

MA = MA1 + MA2

            = 1.875 + 44.92

MA = 43.045 KNM

  MB = - 7.875 – 56.32 = - 64.195 KNM

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\51.JPG

X1 =           y1                            (a)

              y1 + y2

 

∑F y =VA + VB – 18 3 =0

VA =17.98 x 18KN

VA = 18KN

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\52.JPG

BMD

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\54.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\55.JPG

BMA = - 43.05 KNM

BMB = - 64.19 KNM

BMC(R) = 18 (3) – 43.05 = 10.95 KNM

BMC(R) = 10.95 + 24 = 34.95 KNM

BMF = 18 (4) – 43.05 + 24 -   18 = 43.95 KNM

                                                    2

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\53.JPG


1. Principle (I):

Angle between tangents drawn to elastic curve at any two points A & B is equal to area of M/EI diagram between A & B

2. Principle II:

Position of B on elastic curve with respect to tangent drawn at A is equal to moment of area of M/EI diagram between A & B about B.

D:\MY DOCUMENTS\internship\february\11 feb2020\89.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\90.JPG

As per principle 1:ϴ = Area (A)

 Principle 2: t BA = (A) (xB)

3.  Area and CG

For rectangle

D:\MY DOCUMENTS\internship\february\11 feb2020\91.JPGD:\MY DOCUMENTS\internship\february\11 feb2020\92.JPG

For parabola (udl)

D:\MY DOCUMENTS\internship\february\11 feb2020\93.JPG

For cubic parabola (UVL Load)

D:\MY DOCUMENTS\internship\february\11 feb2020\94.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\95.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\96.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\97.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\98.JPG

4.     Steps for Analysis Moment Area method:

  • Find Req. n
  • Find BM at each pt
  • Draw M/EI
  • Draw Elastic curve
  • t AB = Area(AB) x xa
  •  t BA = Area(BA) x xb
  •  t CA = Area(CA) x xC
  • C1C3 – C2C3 = C1C2 = ΔC
  • By similarly Δle , find C1C3
  • C2C2 find by t CA
  • Example:1]

    Derive slope & Deflection at free end of cantilever

    D:\MY DOCUMENTS\internship\february\11 feb2020\99.JPG

    D:\MY DOCUMENTS\internship\february\11 feb2020\100.JPG
    Solution:

    ϴB = Area of (M/EL) AB

         = ½ x L (PL/EI)

    ϴB = PL2/ZEI (    )

    t BA = ΔB = (Area)AB x xB

                  = (PL2/2EI) (2/3L)

    ΔB = PL3/3EI (   )

     

    Example: 2]

    D:\MY DOCUMENTS\internship\february\11 feb2020\101.JPG

    Find:  ϴC, ΔC?

    Solution:

    BMD:

    BM at c = 0

    BMB = (-) 10 x 2 x 1

              = (-) 20 KNM

    BMA = (-) 30 x 3 – 10 x 2(4)

              = (-) 170 KNM

    D:\MY DOCUMENTS\internship\february\11 feb2020\102.JPG

    A1 = 30/EI

    A2 = ½ x 75/EI x 3 = 112.5/EI

    A3 = 1/3 x 2 x 20 x 20/EI = 13.33/EI

    Elastic curve

    D:\MY DOCUMENTS\internship\february\11 feb2020\103.JPG

     Slope & Deflection:

    ϴC = Area of (M/EI) dia. |CA

    ϴC = A1 + A2 + A3 = 1/EI {30 + 112.5 +13.33}

    ϴC = 155.83/EI (      )

    ΔC = t CA = (A1x1 + A2x2 + A3x3) C

         = 1/EI (30 x (3.5) + 112.5(2 + 2/3 x 3) + 13.33 (3/4 x 2))

    ΔC = 575/EI (     )

     

    Example: 3]

    D:\MY DOCUMENTS\internship\february\11 feb2020\104.JPG

    Find:  ϴC&ΔC

    Solution:

    E = 2 x 105 M Pa

    I = 250 x 3503/12

    EI = 1.78 x 105 KNm2

     BMA = -50 x 4 x (2 + 2)

                = - 800 KNM

    BMB = -50 x 4 x 2

             = -400 KNM

    BMC = 0

     

    BMDD:\MY DOCUMENTS\internship\february\11 feb2020\105.JPG

     M/EI Dia.:

    A1 = 100 x 2/EI = 200/EI

    A2 = 1/ 2x 100/EI x 2 = 100/EI

    A3 = 1/3 x 200/EI x 4 = 266.67/EI

     Elastic curve

    D:\MY DOCUMENTS\internship\february\11 feb2020\103.JPG

     ϴC = Area of (M/EI) AC

          = A1 + A2 + A3

          = 200 + 100 + 266.67/EI

          = 566.67/EI

    ϴC = 3.17 x 10-3 rad. (      )

    ΔC = t CA = {Area}A-C x xC

          = (A1x1 + A2x2 + A3x3)@C

          = 200/EI x (4+1) + 100/EI x (4 + 2/3 x 2) + 266.67/EI(3/4 x 4)

          = 1000/EI + 533.33/EI + 800.01/EI

          = 2333.34/EI

          = 13.1 x 10-3 m

    ΔC = 13.1 mm (    )

     

    Example: 4]

    Find ϴC&ΔC

    D:\MY DOCUMENTS\internship\february\11 feb2020\106.JPG

    Solution:

      BMDD:\MY DOCUMENTS\internship\february\11 feb2020\107.JPG

    A1 = M/2EI x 3 = 1.5M/EI

    A2 = M/EI x 3 = 3M/EI

    ϴC = Area (M/EI) A-C

          =A1 + A2

    ϴC = 4.5M/EI

    ΔC = t CA= (A1x1 + A2x2)@c 

          = 1.5M/EI x (3+1.5) + 3M/EI (1.5)

    ΔC = 11.25M/EI (   )

     

    Example: 5]

    Find: ΔC  

    D:\MY DOCUMENTS\internship\february\11 feb2020\108.JPG

    Solution:

     BMA = M

    BMB = 0

     BMD/‘M/EI Dia.

    D:\MY DOCUMENTS\internship\february\11 feb2020\109.JPG

     Elastic Curve

    D:\MY DOCUMENTS\internship\february\11 feb2020\110.JPG

     Slope & Deflection

    t AB = {Area}A-B x(xA)

           = 1 / 2 x M/EI x L {1/3L}

    t AB = ML2/6EI

    t BA = {Area}A-B x(xB)

           = 1 / 2 x M/EI x L {2/3 L}

    t BA = ML2/3EI

    ϴA ≈ tan (ϴA) = t BA/L = ML/3EI  (    )

    ϴB ≈ tan (ϴB) = t AB/L = ML/6EI (     )

    t AB/L = C1C3/L/2

    C1C3 = t AB/2 = ML2/12EI

    t CB = Area C-B x (xc)

          = 1 / 2 x M/2EI x L/2 x {1/3 x L/2}

    t CB  = ML2/48EI

    ΔC     = C1 C2

            = C1C3 – C2C3

            = ML2/12EI – ML2/48EI

    ΔC   = ML2/16EI (      )

     

    Example:6]

    Find: ϴC, ΔC=?

    D:\MY DOCUMENTS\internship\february\11 feb2020\111.JPG

    Solution:

    BMA = BMB = 0

    BMC = PL/4

              = 40 x 4/4

              = 40 KNM

    D:\MY DOCUMENTS\internship\february\11 feb2020\112.JPG

    D:\MY DOCUMENTS\internship\february\11 feb2020\113.JPG

    A1 = 1 / 2 x 2 x 40/EI = 40/EI

    A2 = 1 / 2 x 2 x 20/EI = 20/EI

     Elastic curve

    D:\MY DOCUMENTS\internship\february\11 feb2020\114.JPG

    Slope & Deflection

    t AB = (Area)A-B x xA

           (A1x1 + A2x2)@A

            = 40/EI x (2/3 x 2) + 20/EI (2 + 1/3(2))

            = 53.33/EI + 53.33/EI

    t AB  = 106.67/EI

    t BA =  {Area}AB x xB

          = (A1x1 + A2x2)@B

          = 1/EI {40 x (2 + 1/32) + 20(2/3 x 2)}

        = 133.33/EI

    ϴA ≈ tan (ϴA) = t BA/L = 133.33/4EI = 33.33/EI (      )

    ϴB ≈ tan (ϴB) = tan AB/L = 106.67/4EI = 26.67/EI (      )

    For ΔC (C1, C2)

    t AB/4 = C1C3/2

    C1C3 = t AB/2 = 106.67/2EI = 53.33/EI

    t CB = {Area}CB x  (xC)

           = 20/EI x (1/3 x 2) = 13.33/EI

    ΔC = C1C3 – C2C3

          = 53.33 – 13.33

    ΔC = 39.99/EI

    ΔC = 40/EI (      )

     

    Example: 7]

    D:\MY DOCUMENTS\internship\february\11 feb2020\115.JPG

     Find: ϴA& ΔC?

    Solution:

    ∑MA = 0

    -50 x 1 + VB x 4 + 20 = 4VB = 30

    VB = 7.5 KN

    VA + VB = 50

    VA = 42.5KN

    BMA = 0

    BMB = 0

    BMC = 42.5 x 1 = 42.5 KNM

    BMDL = 42.5 x 3 – 50 x 2 = 27.5 KNM

    BMDR = 7.5 x (1) = 7.5 KNM

    D:\MY DOCUMENTS\internship\february\11 feb2020\116.JPGD:\MY DOCUMENTS\internship\february\11 feb2020\117.JPG

    A1 = 1 / 2 x 1 x 42.5/EI = 21.25/EI

    A2 = 1 / 2 x 2 x 15/EI = 15/EI

    A3 = 27.5/EI x 2 = 55/EI

    A4 = 7.5/2EI x 1 = 3.75/EI

    Elastic curve:

    D:\MY DOCUMENTS\internship\february\11 feb2020\118.JPG

    Slope &Deflection:

    t AB = {Area}A-B x xA

           = (A1x1 + A2x2 + A3x3 + A4x4)@A

          = 21.25/EI x [2/3 x (1)] + 15/EI(1 + 1/3 x 2) + 55/EI(1 + 1)+ 3.75/EI(3 + 1/3 x 1)

          = 14.16/EI + 25/EI + 110/EI + 12.5/EI

         = 161.66/EI

    t BA = Area(B-A) x xB

           = {A1x1 + A2x2 + A3x3 + A4x4}@B

           = 1/EI {21.25(3 + 1/3 x 1) + 15(1 + 2/3 x 2) + 55(2) + 3.75 x 2/3}

           = 218.33/EI

    ϴA ≈ tan (ϴA) = t BA/4

    ϴA = 218.33/4EI = 54.58/EI (      )

    ϴB ≈ tan (ϴB) = t AB/4 = 161.66/4EI = 40.41/EI (     )

    To find ΔC

    t BA/4 = C1C3/1

    C1C3 = 54.58/EI

    C1C2 = t CA = Area CA x xC

              = A1xC

             = 21.25/EI (1/3 x 1)

             = 7.08/EI

    ΔC = C1C3 C1C2

          = 54.58/EI – 7.08/EI

          = 47.5/EI (     )

     

    Key takeaways

  • Find Req. n
  • Find BM at each pt
  • Draw M/EI
  • Draw Elastic curve
  • t AB = Area(AB) x xa
  •  t BA = Area(BA) x xb
  •  t CA = Area(CA) x xC
  • C1C3 – C2C3 = C1C2 = ΔC
  • By similarly Δle , find C1C3
  • C2C2 find by t CA
  •  


    Slope deflection methods: means it is a method or tool by which we find out how a structure or a member of a structure behaves when subjected to certain excitation.
    In other words finding out internal forces (axial force, shear force, moment), stress, strain, deflection, etc in a structure under applied load conditions.

    1. Fixed End Moments: Standard Cases Fixed End Moments

    Standard Cases

    1.

     

    2.

     

    3.

     

    4.

     

    5.

     

    2. Derivation of slope Deflection Method

    In beam, a continuous beam ABCD, consider AB part and take fixed end moments and rotation at support as given below 

    As per the diagram

    Slop deflection equations are

     3. Slope Deflection Method

  • Slope=
  • Deflection=
  • Sign Convention
  • Simply supported Beam
  • At support form

    At the simply supported end

    2.     is always zero.

    3.     is always zero.

    4.     M Cantilever

  • =0 at the fixed end at force end
  • 2.      At fixed end

    4. Types of numerical for slope deflection method

    1. The beam is without sink ( is zero.)

    2. Beam with sink (is given)

    3. Analyze of the frame without sink

    4. Analyze the frame with the sink.

  • Analyze of the continuous beam without sink
    which is given.
  •       Steps for analysis of the slope deflection method.

    1. Find unknown slope.

    2. Find fixed end moment

    3. Apply the slope deflection equation.

                       

                     

        4. Use the joint equilibrium equation at the joint.

        5. Find final moments.

        6. Find relation by equation &Draw SFI

        7. Draw BMD

    1)     Analyze the continuous beam shown in figure Draw also B.M. and S.F.

    Step-1 Find fixed end moments

    Step-II Slope deflection method

    Step-III Apply equilibrium condition at joint

    Step-IV   Find final moments.

    Step-V Find reaction

    S.F. at A Take a moment at A is

     

    SFD & BMD

     

    2)     Determine support moments & draw BMD for the beam shown by using S.D.

     

  • Find D ki
  •  

    2.     Find fixed end moments

     

    For BC Beam

     

    3.     Apply the SD equation

    AB=>

    BC=>

    Apply equilibrium condition joint B

    -------   due to Hinge support

    Put in equation (1) (2) (3) & (4)

    Draw BMD Diagram

     

     

    4.     Analyze the continuous beam ABCD by S.D. method draw BMD

    Modify Diagram

     

    Apply S.D. equation

    Joint equilibrium equation

    Joint at B

    5.     Analyze the continuous beam as shown in the figure by S.D. method Draw BMD

    Find fixed end moment

    KNM

    S.D. equation

    Span AB

    Joint equilibrium equation

    Joint B.

    KNM

     

     

    SFD

    BMD

     

    6.     Analyze the continuous beam by S.D. equation

    Apply S.D. equation

    AB=>

    2)

    BC=>

    Joint equilibrium condition

     

    BMD

     

     

    7.     Analysis of fixes beam by S.D method

     

     

    Step 1) Dki = 2 

    Step 2) Find Fixed End Moments

    Solution:

    For AB

     

    For BC

     

     

    For CD

     

    Apply S.D. equation

    Joint equilibrium condition

     

    8.     Determine the final moments by slope deflection method take EI are constant.

    Step 1) Dki = 2

    Step 2) Find fixed end moments

     

     

    Step 3) Apply S.D. equation

    For beam BC

    --------(3)

     

     

    -------(4)

    OR

    For member, BC apply modified equation

     

    Step4)

    9.5 + 1.46 EI + 0.33EI-------(A)

    0-------(B)

    Equating equation A & B get

     

    OR

    Apply this condition to the modified equation

    Step 6) BMD

     

    2.     Problems based on sink

    Sink means deflection which occurs due to load which is acting on the beam

    Note: always take EI in terms of KNM2

    1)     Analyze continuous beam ABCD having

                Point B is sunk by 2.5mm also draw BMD

    Solution:

    Step 1) Dki = 2  

    Step 2) Fixed end moments

    STEP 3) Apply S.D. equation

    AB=>,l = 3m

    BC=>

    Apply equilibrium condition

    Joint B

    Joint C

    KNM

    KNM

    KNM

    KNM

    KNM

    BMD

     

    2)     Determine the moment at the end of the fixed support A of the propped cantilever shown

  • When the support is at the same level
  • When the support B sink by 10mm.
  • Take   EI Draw BMD

    CASE 1)… because support at the same level

    STEP 1) Dki = 1

    Step 2) Fixed end moments

    AB =>

      simply supported end

    Case 2)

    AB =>

    Equilibrium Equation

    Frames

  • Non-sway-The frame is not deflected 
  • Sway-The frame is deflected 
  •   occurred only in column

      is zero in the beam

  • Analyze the portal frame as shown by SD method draw BMD(2017)   
  • Non-sway
  • Find fixed end moments
  •  

     

    AB =>

    Equilibrium condition

    Joint at B

     

    2.     Analyze the frame by SD method by BMD

         Find fixed end moments

       ----due to no loading

    S.D. equation

    AB =>

    BD =>

    3.     Equilibrium condition joint B

     

     

    BMD

    3.     Analyze the frame shown in Figure support A is fixed B& C are winged. Draw BMD

    Find a fixed end

     S.D. equation

    For AB Span l =6m, ,I =2I,

    For BD Span l =4m, ,I =I,

    For BC Span l =4m, ,I =1.5I,

     

    Equilibrium condition joint B

     

    + + =0

    -16.67+3.83++ ---------(A)

    ------(B)

    --------(C)

    Equating Equation A, B & C you will get

    3.     Problem on sway Frame

    Example: 1] Analyze the frame shown in fig slope deflection method

     

    Step 1) Sway Frame: due to lateral loud frame in sway

    Find Fixed Ends Moments:

    M FAB =   =             = 7.5KKNM

    MFBA =   =            = -22.5KNM

    M FBC      = M FCB = = = 60 KNM..

    Apply Slope Deflection equations

    For AB: ƟA=0, ƟB  =?

    MAB = MFAB      (2ƟA+ ƟB-)

    MAB = 7.5 +    ------------1)

    MBA = -22.5 +   ---------------2)

    For BC: =?

    MBC = +60+ ()   -------3)

    MCB = -60+(ƟB)    -------------4)

    MDC = MF DC(2ƟD+ ƟC-)

    MDC   = (ƟC-) ---------5)

    MCD   = (2ƟC-)   --------6)

    4) Apply joint equilibrium equation

    MBA+MBC = 0

    -22.5 + = 0---------------(A)

    MCB+MCD = 0

    -60+(ƟB) + ( 2ƟC-)= 0   ------------(B)

    Shear equation:           HA +HD -40= 0   --------------7)

     

    For AB Column

       

     

     

     

     

     

    - HA 4 +MAB +MBA+ 40 *1=0

    4HA = MAB + MBA+ 40 *1

     Put Equation 1&2

      4HA =7.5 + -----(8)

      

     

     

     

    This Fig     4HD = MDC+MCD

    Put Equation 5 & 6

    4HD = (ƟC-)  + ( 2ƟC-)    ---------9)

    Put equation 8 & 9 in Equation (7) Equation u will get equation (C)

    Then Equating Equation (A,B,&C)

    QB = -39.25/EI

    QC = 19.25/EI

          = 110/EI  

    Final moments

    MAB = 29.12 KNM

    MBA = -20.5 KNM

    MBC = 20.5 KNM

    MCB = -60.51 KNM

    MCD = 60.51KNM

    MDC = +50.875 KNM

     

    Key takeaways

    Steps for analysis of the slope deflection method

          1. Find unknown slope.

          2. Find fixed end moment

          3. Apply the slope deflection equation.

             4. Use the joint equilibrium equation at the joint.

             5. Find final moments.

             6. Find relation by equation &Draw SFI

             7. Draw BMD

      


    1. Concepts – i) Moment at simply supported end is always zero.

                               ii) Moment at fixed & intermediate is created

    2. Formula:   

    00

    For span ABC

    MAl1 + 2MB (l1+l2) + Mcl2 = 6a1x1  + 6a2x2

                                                                     l 1           l2

    For different I -

    0

    MAl1 + 2MB (l1+l2) + Mcl2 = 6a1x1  + 6a2x2

                       I1              I1   I2            I2      l1I1          l2 I2

     

    Area due to loading:

    12

    1 - Copy

    Case (1) Both ends are simply supported end

    3

     

     

    2)  6a1x1 = A = 2 x 6 x 90 = 360   A2 = 1 x 4 x 10 = 20m2

                               3                                               2

     

    x1 =  6/2 = 3m                          x2 =  4/2 = 2m           

     

      6a1x1 = 6 x 360 x 3     = 1080

         l1                             6

      6a2x2 = 6 x 20 x 3     = 60

          l2                   4

    3)     Apply 3 moments theorem

    For span ABC

    MAl1 + 2MB (l1+l2) + Mcl2 = 6a1x1 + 6a2x2

                                                        l 1           l2

     

    MA = MC = 0   l 1=6m   l 2 =4m

    0 + 2MB (6+4) + 0 = 1080 + 60

     2MB (10) = 1140

    S.F.D. Due to external load

    54

     

     

     

    RA = Wl = 20x6 = 60 KN  RB = W = 10 = 5 KN

               2           2                                              2       2

     

     RB = Wl = 20x6 = 60KN  RB = W = 10 = 5 KN

               2           2                                              2       2

     

    2)  Due to moment

    67

     

    EMA=0     EMB = 0

    RB x 6 – 57 = 0    RC x 4 + 57 = 0

    RB =    9.5 KN     RC = 14.25 KN

     

    Efi = 0

    RA + RB = 0     RC + RB = 0

    RA = - 9.5 KN      RB = 14.25 KN

     

    Total reaction:

    RA = 50.5 KN

    RB= 69.5 KN

    RC = 5-14.25 = - 9.25 KN

    RB = 5 + 14.25 = 19.25 KN

    89

     

    -2  One end is fixed & other is Hinge

    10

    A1 = 2 x wl2 x 12  = 2  x 30 x 122 x 12   = 4320 mm2

             3                              3                8

     

    x1 = l1 = 12  = 6  = 6m

             2      2

     

    A2 = 1  x Wab x 12  =  1  x   240 x 4 x 8   x   12   = 3840 mm2

              2                              2                12

     

    x1  = l2 = 12 = 6m    x1 =  L + a     x2 = l +b

             2      2                                                      3          3 

     

    11

    Apply 3 Moment Theorem

    A’AB

    MA1l1 + 2MA (l1+ l1 ) + MB l1     =    6a1x1  + 6a1x1

                                                                       l1               l1

    0 + 2MA (0+12) + 12MB = 0 + 6 x 4320 x 6

                                                                    12

     

    24MA + 12MB = 12960    (1)

     

    Span ABC

    MAl1 + 2MB (l1+ l2) + MCl2     =    6a1x1  + 6a2x2

                                                                  l1               l2

     

    12MA + 2 MB (12 + 12) + 0 =    6 x 4320 x 6   + 6 x 3840 x 6

         12                12

     

    12MA + 48 MB = 24480           (2)

     

    Add eqn.  (1)  & (2)

      MA = 325.71 KNM

         MB = 428.57 KNM

     

    Draw S.F.D.

    1) Due to external load

     

    1213

     

     

    RA = wl = 30 x 12 = 180 KNW   RB = wb  = 160 KN

               2             2                                                       l

     

    RB = wl = 30 x 12 = 180 KN   RC = wa =120 KN =

              2             2                                                                     l      

     

    2) Due to moment

     

    1415

     

     

    EMA=0      EMB=0

    325.71 – 428.57 + RB x 12 = 0   428.57 + RC x 12 = 0

    RB = 8.57       RC = 35.71 KN

     

    RA = 8.57 KN      RB = 35.71 KN

     

    Total Reaction:

    RA = 180 – 8.57 = 171.43 KN

    RB = 180 + 8.57 = 188.57 KN

    RB = 160 + 35.71 = 124.29 KN

    RC = 120 + 35.71 = 155.71 KN

    1617

     

     

    (3) Both ends are fixed

    1819

    A1 = 0

    xi = 0

    A1 =  2  x  wl2  x 6 =  112.5    A2 =  2  x  wl2 x  5  = 125

               3        8                                                                     3        8  

     

    x1 = 6/2 =  3     x2 = 5/2 = 2.5

    A12 = 0       x12 = 0

     

    Span A1AB

    MAl1+ 2MB (l11 + l1) + MBl1    =  6a11x11  +  6a1x1

                                                   l11                       l1

    0 + 2MA (0+6) + 6MB = 0 + 6 x 112.5 x 3 

               6 

     

    12MA + 6MB = 337.5  

     

     

    Span ABC

    MAl1+ 2MB (l11 +l1 ) + MC =  6a1x1  +  6a2x2

                                            l1                      l2

     

    6MA + 2 MB (6+ 5) + MC x 5 = 6 x 112.5 x 3  +  6 x 175 x 2.5

                          6    5

     

     6MA + 22MB + 5MC = 712.5   (2)

     

    Span BCC

    MBl2+ 2MC (l2 + l12) + MC1l12 = 6a2x2  +  6a12x12

    l2                      l12

     

    5MB + 2MC (5+0)  + 0 =   6 x 125 x 2.5

             

     

    5MB + 10 MC = 375    (3)

     

    MA = 17.33 KNM

    MB = 21.59 KNM

    MC = 26.70 KNM

     

    Reaction due to external load

    2021

     

    RA = wl = 150    RB = wl    = 100 KN

              2      2

     

    RB = wl    = 150    RC = wl        = 100 KN

              2                                                                      2

     

    Reaction due to moments

    2223

     

     

    17.33 – 21.59 + RB x 6

              RB= 1.022

      RB = 0.71 RA = 0.71   RC = 1.022

     

    Total Reaction:

    RA = 150 – 0.71 = 149.29 KN

    RB = 150 + 0.71 = 150.71 KN

    RB = 100 – 1.02 = 98.98 KN

    RC = 100 + 1.02 = 101.02 KN

    2425

     

    Overhung Numerical:

     

    27

    26

    28

     

     

    A1 = 1 x 3 x wab     A2 = 1  x  wl  x 4

              2           l               2     4

    1 x 3 x (20 x 1 x 2) = 20m2   A2 = 60 m2

    2                     3

    x1 =  4 /3    3 +1  = 4/3  = 1.33

                            3

    Span ABC

     

    MAl1+ 2MB (l1 + l2) + MCl2 = 6a1x1 + 6a2x2

                                              l1                      l2

    0 + 2 MB (3+ 4) + 15 x 4 =    6 x 20 x 1.33 +    6 x 60 x 2

                  3          4

     

     14MB + 60 = 53.2 + 180  

      MB = 173.2 KN

     

    Key take ways

    1. Find the reaction

    2. Apply three moment theorem

    3. Draw SFD

    4. Draw BMD

     


    It is used for the analysis of indeterminate structures. In this method solution of simultaneous equations of the slope, the election method is replaced by an iterative distribution procedure.

    1. Carryover moment: A moment is allowed to a member permitting rotation at the point of application and keeping the other end fixed additional moment develops at the far end this is called.

    2. Carryover factor:-the ratio of carryover moment to applied moment is called carry-over factor.

    Carryover factor=

    3. Stiffness:- Moment required to rotate an end by a unit angel when rotation is permitted at that end is called stiffness of the beam.

    Stiffness of the beam AB=

    4. Distribution factor:-When a moment is applied to a right joint where a number of members are meeting, the applied moment is shared by the members meeting at the joint.  The ratio of the moment shared by a member to the applied moment at the joint is called.

    Examples:

  • To find stiffness by conjugate method
  •  

    Then consider at the B end

     

    Carryover factor =

    Put    

    Distribution factor =>

    2.     Continuous beam with simply supported ends lets CD lost span let

     M act at joint C.

     

     

    5. Carryover factor:-

    Types of toe and support.

  • Fixed support.                                           1/2
  • Intermediate support.                               1/2
  • Rigid joint.                                                    1/2
  • Roller, hinged, internal.                              0
  • Overhanging                                               0
  • Relative stiffness factor (I/l)

  • If for the end is fixed=
  • If for the end is simply roller internal hinged I overhung
  • 5.     Distribution factor: A moment which tends to rotate without translation a joint to which several members are connected will be divided amongst connected member in proportion to their stiffness.

     

    6. Carryover moment:-when a movement is applied to produce rotation without translation at the near supported and B of a beam whose father end A is fixed the carry over the moment at the further and is ½ are applied movement m I is of the same as the applied moment.

    7. Application of MD method to continuous beam with fixed ends:-

  • Assuming all ends are fixed, find fixed end moments
  • Calculate the distribution factor for all member meetings at the joint.
  • Balance a joint by distributing a balancing moment.
  • Carryover half the distributed movement to the far end of the members.
  • Repeat step 3 and step 4 till distributed moments are negligible.
  • Sum up all the moments at a particular end of the members to get the final moment.
  •  

    8. Steps for analysis of moment distribution method.

  • Find fixed end moment
  • Find the distribution factor
  • Draw moment distribution table
  • You get final moments
  • Draw BMD&SFD
  • Distribution factor is=

    K=stiffness -it depends on the support condition.

    1. Far end fixed &intermediate support =

    2. The far end simply supports =

    COF -> support

    O -> simply support

    ½ -> fixed

    ½ -> intermediate

    Examples:

  • Analyze the given beam by M.D. method (10 marks item)
  • AB=>

     

    1)     Draw distribution table

    Joint

    Member

    K

    B

    BA

     

     

    BC

     

    0.4

     

     

     

    0.6

     

    2)     Moment distribution Table

    0.4

    0.6

    Member

    AB          BA

    BC                                           CD

    Fixed end

     

    Balancing

    120                               -  120

     

       42

    15                                            -15   

     

     63

    COF

     

    Balancing

    21    0

                                                       0

    31.5

       Final moments                     

     

    141                                  -78

    78                                       16.5

     

     

    SFD

    BMD

     

    2.     Analyze the given beam ABCD by Moment Distribution method

    1) Find fixed moment

    KNM

    KNM

    KNM

    KNM

    KNM

    Step 2)

     

    JOINT

    MEMBER

    K

    B

    BA

     

     

     

    BC

     

     

     

     

     

    5EI

    0.2

     

     

     

     

    0.8

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

    4.5EI

    0.89

     

     

     

     

    0.11

     

    3) Moment Distribution Table

    0.2

    0.8

     

    0.89

    0.11

    Members

    AB                      BA

    15                     -15

     

     

    BC                              CB

    13.33                        -13.33

     

     

    CD                   DC

    8.89            -4.44

     

    2.22           + 4.44

    Fixed End

     

    Balancing

    Initial Moments

     

    Balancing

    15                       -15

     

     

                           0.331

    13.33                      -13.33

     

     

    1.34                           1.98

    11.1                    0

     

     

    0.25

    COF

     

    Balancing

    0.165             

     

                           -0.19

     

     

    0.99                           0.67

     

    -0.79                          -0.59

     

     

    -0.07

    COF

     

    Balancing

    -0.09

     

                          0.058

    -0.29                        -0.39

     

    0.22                          0.34

     

     

    0.04

    Final Moments

    15.075         -14.801                              

     

     

    14.8                         -11.32              

    11.32                  0

     

    KNM

    KNM

    KNM

    KNM

    KNM

    KNM

     

    BMD

     

    3.     Analyze the given beam by M.D. method

     

     

    Step 1) Find fixed end moment

     

    Step 2) Distribution Factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

    2.5 EI

    0.2

     

     

    0.8

    C

    CB

     

     

    CD

     

     

    0.66

     

     

    0.33

     

     

    Moment distribution table

    0.2

    0.8

     

    0.66

    0.33

    Members

    AB                      BA

    BC                              CB

    CD                   DC

    Fixed End

     60                    -60

     

    -60                    -30

     

    30       -30

     

     

    13.33              -6.66

     

    3.33               +6.66

     

     

    Balancing

    Initial Moments

     

    Balancing

    0                                                   90

     

     

    12

    30                             -30

     

     

    48                              8.8

    16.66             0

     

     

    4.40

    COF

     

    Balancing

     

     

                                -0.88

    4.4                             24

     

    -3.52                        -15.84

     

     

    -1.92

    COF

     

    Balancing

     

     

                              1.58

    -7.92                        -1.76

     

    6.33                          1.16

     

     

    0.58

    COF

     

    Balancing

     

     

                              - 0.11

    0.58                           3.16

     

    -0.46                         -2.08

     

     

    -1.04

    COF

     

    Balancing

     

     

                               0.20

    -1.04                       -0.23

     

    0.83                         0.15

     

     

    0.07

    Final Moments

    0                     -77.21

    77.21                         -12.64

    12.75               0

     

    BMD

     

    3)     Analyze the given frame by MD method

     

    Step 1)  Find Fixed End Moments

     

    Step 2) Distribution table

    Joint

    member

    K

    B

    BA

    1.41

    0.47

     

    BC

    1.41

    0.53

     

    Step 3) Moment Distribution Table

    0.47

    0.53

    Member

    AB                                    BA

    BC                           CB

    External moment

     

    Fixed end

     

    balancing

     

     

    60                                   -  60

     

     

    135   

     

     2.5                          -2.5

     

    -1.25                         2.5

    Initial Moment

     

    Balancing

    60                                     -60

     

                                          27.61

    1.25                         135

     

    31.13

    COF

     

    Balancing

    13.8                                 0

     

                                            0

    0

     

    0

       Final moments                     

     

    73.8                   -32.39

    32.39135

     

     

    9.     Problem-based on sink

    1)     Analyze the given beam ABCD having pt B is sink by 10mm

    For AB Span

    KNM

    BC= +VE

    CD=0  No loading

     

    Step 2) Distribution factors

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

    1.66

    0.60

     

     

    0.40

    C

    CB

     

    CD

     

    0.40

     

    0.60

     

    Step 3) Moment Distribution Table

    0.6

    0.4

     

    0.4

    0.6

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

     

    Balance

    34.25

     

    -5.75

     

    -28.74

     

    53.66

     

    -19.16

    -66.33

     

    26.53

    0

     

    39.79

    0

     

    COF

    Balancing

    +14.37

    -7.95

    13.26

    -5.30

    -9.58

    +3.83

     

    +5.74

    19.89

    COF

    Balancing

    -3.97

     

    -1.14

    1.91

    -0.76

    -2.65

    1.06

     

    1.59

     

    COF

     

    Balancing

    -0.57

     

     

    -0.31

    0.53

     

    -0.21

    0.38

     

    0.15

     

     

    0.22

    0.79

    Final Moments

    15.34               

     

    -43.89              

    43.89              

    -46.61              

    -46.61              

    20.68

     

    2)     Draw BMD by Moment Distribution Method and  C support is sink by 25mm

     

    For AB   

    For BC mm

    For CD mm

     

     

    Step 2) Distribution factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

    0.33

     

     

    0.66

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

    0.66

     

     

     

     

    0.33

     

    Step 3) Moment Distribution Table

     

    0.33

    0.66

     

    0.66

    0.33

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

    40

    -40

    149.16

    135.83

    -40.83

    42.91

    -85.83

    +85.83

    Final Balance

    40

    -40

    -36.02

    149.16

    -72.04

    135.83

    -91.02

    2.08

    -45.51

    0

     

    COF Balancing

    -18.01

     

    15.02

    -45.51

    30.04

    -36.02

    23.77

     

    11.89

     

    COF

    Balancing

    7.505

     

    -3.92

    11.89

    -7.85

    15.02

    -9.91

     

    -4.957

     

    COF

     

    Balancing

    -1.96

     

     

    1.64

    -4.96

     

    3.28

    -3.93

     

    2.59

     

     

    1.296

     

    Final Moments

    29.28               

    -63.28

    64.01

    36.33

    -35.20

    0

    Examples:

    1)     Problems based on frame

    Non- sway

    Step 1) Fixed End Moments

    Step 2) Distribution Factor

    Joint

    Members

    K

     

     

     

     

    B

    BA

     

     

    BD

     

     

     

    BC

     

     

     

     

     

    2.33

    0.28

     

     

    0.43

     

     

     

    0.28

     

    Step 3) Moment Distribution Table

    0.28

    0.43

    0.28

    Members

    AB

    BA

    BD

    BC

    CB

    DB

    Fixed end

     

    Balance

    90

     

    -90

     

    20.3

     

    10

     

    31.17

    7.5

     

    20.3

    -1.5

    -10

     

    Cot Balancing

    10.15

    0

    0

    0

    0

    0

    0

     

    10.15

    15.58

     

    Final

     

    100.15

     

    -69.7

     

    42.17

     

     

    27.8

     

    2.65

     

    5.58

     

    BMD

     

    Determine Moments of the given figure by moment Distribution Method

    Step 1) Non-sway

     

    Step 2) Fixed End moments

    knm

    Step 3) Distribution factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

     

    0.43

     

     

    0.57

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

    0.64

     

     

     

     

    0.36

    Step 4) Moment Distribution table

    0.43

    0.57

     

    0.64

    0.36

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

    0

    0

    22.5

    -22.5

    0

     

    0

    Initial Balance

    0

    0

    -0.96

    22.5

    -1.28

    -22.5

    +1.14

    0

    +0.81

    0

     

    COF  Balancing

    -0.48

     

    0.24

    +0.57

    0.32

    -0.64

    0.40

     

    0.23

     

    COF

    Balancing

    0.12

     

    -0.086

    0.20

    -0.114

    0.16

    -0.10

     

    -0.057

     

    Final Moments

    -0.36                 

    -0.806             

    0.806

    -3.57

    -0.637

    0

     

    Analysis the given frame as shown

     

     

    Distribution Factor

    Joint

    Members

    K

     

     

     

     

    B

    BA

     

     

    BD

     

     

     

    BC

     

     

     

     

     

    3.455 EI

    0.40

     

     

    0.28

     

     

     

    0.32

     

    Moment Distribution Table

    0.40

    0.28

    0.32

    Members

    AB

    BA

    BD

    BC

    CB

    DB

    Fixed end

    106.66

    -53.33

    10

    5

    40

    20

    -40

    40

     

    -10

    +10

    Initial Balance

    106.66

    -53.33

    -8.66

    15

    -6.06

    60

    -6.43

    0

     

    0

     

    COF Balancing

    -4.33

    0

    0

    0

    0

    0

    0

     

     

     

    Final

    Moments

     

    102.35 

     

     

                              -61.99              

     

    8.94                 

     

    53.07

     

     

    0

     

    0

     

    BMD

    Problem-based on non-sway form

     

     

    Distribution factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

    =

     

     

     

     

     

    0.70

     

     

    0.30

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

     

    0.30

     

     

     

     

    0.70

     

    Step 4) Moment Distribution table

    0,70

    0.30

     

    0.30

    0.70

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

    30

     

    -30

    -30

     

    -15

    90

    -90

    30

     

    15

    -30

     

    30

    Initial

     

    Balance

    0

    -45

     

    -31.5

    90

     

    -13.5

    -90

     

    13.5

    45

     

    31.5

    0

    COF  Balancing

     

     

    -4.72

    6.75

    -2.02

    -6.75

    2.02

     

    4.72

     

    COF 

    Balancing

     

     

    -0.7

    1.01

    -0.3

    -1.01

    0.3

     

    0.7

     

    COF 

    Balancing

     

     

    -0.1

    0.15

    -0.04

    -0.15

    0.04

     

    0.1

     

     

    Final

    Moments

     

     

     

    0

     

     

    -82.2

     

     

    82.2

     

     

    82.2

     

     

    -82.2

     

     

    0

     

     

     

    BMD

    10. Problem-based on sway Frame

    Concept:  The carry over for fixed support    

     

     

     

     

    For Hinge support end moment

    is not known.

     

    Problems:

    1)     Analyze the given frame by moment distribution method take EI Constant

     

     

     

     

     

     

    Step 1) Find Distribution Factor

    Joint

    Member

    K

    ƩK

    D.F.

    B

    BA

      =3EI/3=1 EI

    0.33

    BC

    = 4EI/2  = 2 EI

    0.67

    C

    CB

    = 4EI/2=2EI= 2EI

    0.67

    CD

    = 4EI/4= EI

    0.33

     

    Step: 2 Non sway moment distribution moment Table

    Members

    AB                            BA

    BC                                    CB

    CD                           DC

    Fixed End

     Balancing

    0                                                                   0

                                       0

    0                                                                                      0

    0                                            0

    0                                                           0

    0

    Final Moments

    0                                 0

    0                                          0         

    0                            0

     

    Step 3: Assumption for sway Frame

     

     

     

     

     

    Step 4: Draw Sway Moment distribution Table

    0.33

    0.67

     

    0.67

    0.33

    Member

      AB 

          BA

     

    BC                        CB        

     

    CD                     DC

    FEM

    Balancing

    0

               8

    0

            0

    9

    9

     

           -2.67

    -5.33

           -6.00

    -3.00

     

     

    COF

    Balancing

     

     

    1

    -3

            -2.67

     

    1.5

     

    2

    1.78

    0.85

     

     

    COF

    Balancing

     

     

    -0.30

    0.69

    1

     

     

     

    -0.39

    -0.67

    -0.33

     

     

    COF

    Balancing

     

     

    0.11

    -0.33

    -0.30

     

    0.17

     

    0.22

    0.20

    0.10

     

     

    COF

    Balancing

     

     

    -0.03

    0.10

    0.11

     

    0.05

     

    -0.07

    -0.07

    0.05

     

    0

    6.11

    -6.11

    -6.62

    6.62

    7.83

     

     

    Horizontal thrust at A

    Actual Sway force of 12 KN

    Step 6) Final Moments Table:

    Member

    AB                             BA

    BC                           CB

    CD                         DC

    Non Sway Moment

    0                                0

    0                                 0

    0                                0

    Sway Moment

    0

    6.11

    -6.11

            -6.62

    6.62

           7.83

    Actual Sway

    0

    +12.98

    -12.98

            -14.06

    +14.06

          +16.6

    Final Moment  (Addition of Non Sway Moment +corrected moment  by sway )

    0

    +12.98

    -12.98

            -14.06

    +14.06

          +16.6

     

    Correct Horizontal A reaction

    2)     A two hinged portal frame ABCD consist of a vertical columns AB, DC at 4m height if the beam BC of 3m the frame carried a vertical point load of 120kN on the beam at a distance of 1m from B find the reaction at support.

     

     

     

     

     

     

     

    Solution:

    (i) Non Sway analysis:    

    and

    Step 2) Draw Distribution Factor Table

    Joint

    Member

    K

    ƩK

    D.F.

     

    B

    BA

    3EI/L= 3EI/4 = 0.75 EI

     

    2.08 EI

    0.36

    BC

    4EI/L= 4EI/3=1.33 EI

    0.64

     

    C

    CB

    4EI/L = 4EI/3=1.33EI

     

    2.08 EI

    0.64

    CD

    3EI/L= 3EI/4=0.75 EI

    0.36

     

    Step 3) Draw Non sway moment distribution Table

     

    0.36

    0.64

     

    0.64

    0.36

    Member

    AB                            BA

    BC                          CB

     

    CD                         DC

    FEM

    Balancing

    0                                                            

                                     -19.2

    53.33                  -26.66

    -34.13                17.06

     

    0                                                     0

       9.6

    COF

    Balancing

     

                                      -3.07

       8.53               -17.07

    -5.46                    10.92

     

     

    6.15

    COF

    Balancing

     

                                         -1.96

       5.46                   -2.73

    -3.49                     1.75    

     

     

    0.98

    Final Moments

    0                               -24.23

    24.24                 -16.73

     

    16.73                     0

     

    Horizontal reaction

    Sway force = 1.87 kN 

    (ii) Sway analysis

    Step 4 )

    Initial equivalent moments are negative.

    :

     

    0.36

    0.64

     

    0.64

    0.36

    Member

    AB                            BA

    BC                          CB

     

    CD                         DC

    FEM

    Balancing

    0                                 -10   

                                     3.6

    0                              0

    6.4                     6.4

     

    -10                               0

     3.6

    COF

    Balancing

     

                                     - 1.15

    3.2                      3.2

    -2.05                    -2.05.

     

     

    -2.05

    COF

    Balancing

     

                                         0.35

      - 1.03                   -1.03

    0.66                     0.66    

     

     

    0.35

    Final Moments

    0                                    -7.2

    7.2                         7.2

     

    -7.2                     0

     

    Horizontal reaction

    Resolving force horizontally = 1.81 +1.81 =3.63kN

    Actual Sway = 3

    Sway                    0        7.27

    7.27                                7.27

    -7.27                                    0

    0     – 3.64

    +3.64                              3.64

    -3.64                                    0

    Non Sway            0      21.17

    -21.17                           21.17

    -21.17                                  0

     

        

     

    Key takeaways

  • Find fixed end moment
  • Find the distribution factor
  • Draw moment distribution table
  • You get final moments
  • Draw BMD&SFD
  •  


  • Symmetrical frames:
  • The analysis of these symmetrical frame in which a joint translation is prevented can be performed in the same way as far as continuous beam

    For symmetrical loading, symmetric quantities like bending moment displacement are symmetrical about the censorial vertical axis.

    2.     Anti-symmetrical frames:

    If a frame whose joint do not translate laterally but are free to rotate is called anti symmetrical or unsymmetrical frames.

    For anti-symmetrical loading symmetric quantities like bending moment displacement is zero at the point of censorial vertical axis.

    Anti-symmetrical quantities like slope and shear force distributed about the censorial vertical axis.


    Sway Correction Factor

    Analysis of frame with sway

    Analysis the rigid frame shown in fig by M.D. method.

     

     

     

     

     

    (i)   Fixed end moment in all the members = 0

    (ii)  D.F

    B

    BA

    2.33EI

    0.57

    BC

    0.43

    C

    CB

    2.5EI

    0.4

    CD

    0.6

     

    Conclude S = 80 KN

    Sway Force

    Consider FBD for column

    SWAY ANALYSIS

    Consider Sway on right hand side

    is

    is

     

    Consider

    Moment distribution maybe carried out.

     

    A                              B        C     D

     

    10

    0.5

    10

    0.5                                            

     

    0.5

     

    0.5

    20

     

    20

     

    -5

    -5

    -10

    -10

     

    -2.5

     

     

    2.5

    -5

    -2.5

     

    -5

    2.5

    1.25

    1.25

     

    1.25

     

     

    -0.32

    0.63

    1.25

     

    0.63

    -0.32

    -0.62

    -0.62

     

    -0.16

     

     

    +0.16

    -0.31

    -0.16

     

    -0.31

    0.16

    0.08

    0.08

     

    0.08

     

     

    -0.02

    0.04

    0.08

     

    0.04

    -0.02

    -0.04

    0.04

     

    +8.67

    -7.32

    -7.32

    -10.66

    10.66

    15.35

     

    Sway Correction Factor

    Arbitrary Sway

    +8.67

    +7.32

    -7.332

    -10.66

    +10.66

    +15.37

    Actual Sway

    8.67×6.37= 53.88

    7.3×6.2= 45.44

    -45.44

     

     

     

    Non Sway

    +20.42

    -12.44

    +12.44

    +3.35

    -3.35

    -1.77

    Final

    +74.30

    +33.05

    -33.05

    -62.75

    +62.7

    +93.62

     

     

    Key takeaways

    1. Find end moment in all the members

    2. Distribution factor

    3. Sway force

    4. Sway analysis

    5. Find moment distribution

    6. Find sway correction factor

     


    1. Portal method:

    Steps

    1)     Assume first assumption -> mark point of contra flexure at centre of each column & beam

    2)     Apply 2nd assumption -> Horizontal shear is double at interior column.

    3)     Find P& Q force.

    4)     Find moment at beam = always same as moment of column.

    5)     Find shear force at beam=moment at

    1)     Analyse the given figure by portal method

     

    Step 1) 1st Assumption-> Mark point of contra flexure of each member

    Step 2) 2nd Assumption -> Interior Horizontal shear is double than (extreme) lost member.

    P+2P+P=12

    P=3KN

    Q+2Q+Q=12+24

    Q=9KN

    Step 3) Moment at the end of column

    Step 4) Moment at column

    Step 5) Moment at the end of roof Beam

    Step 6) Moment at the end of floor Beam

    Step 7) Shear force in Beam

    Similarly,

    2)     Analyse the given figure by portal Method

    Mark point of contra flexure at centre of each beam& column.

    Horizontal share is double at interior column.

    Find p & q

    P+2P+P=20

    P=5kN

    Q +2Q +Q=50

    Q=12.5KN

    Moment at column AD= =

    MBE=

    MCF=

    MDG=MGD=

    MEH=MHE=

    MFI=MIF=

     

    3) Analysis the given figure by portal method

    P+2P+2P+P=25

    4P=25

    P=4.16

    Q+2Q+2Q+Q=60

    6Q=60

    Q=10KN

    MAE=MEA==4.16

    MBF=MFB=

    MCG=MGC=

    MDH=MHD=

    MEI=MIE==10

    MFI=MIF=

    MGK=MKG=

    MHL=MLH=

    Shear force

    SFAB=20.8/2=10.4

    SFBC=20.8/3=6.93

    SFCD=20.8/4=5.2

    SFEF=60.8/2=30.4

    SFFG=60.8/3=20.26

    SFGH=60.8/4=15.3

    3)      Analysis the given figure by portal method

    P=3.33      Q=3.33     R=10       

    4)     Analysis the frame shown in figure below by  portal method

    Step1> Apply 1st assumption

    2> Apply 2nd Assumption-> Horizontal shear is double at interior member

    P+2p+p=25

    P=6.25KN

    Q+2Q+Q=25+50

    Q=18.75KN

    3) Moment at the end of column

    4) Moment at the end of floor column

    5) Moment at beam

    6) Moment at end of beam

    7) Shear force at (beam) floor

     

    Key takeaways

    1)     Assume first assumption -> mark point of contra flexure at centre of each column & beam

    2)     Apply 2nd assumption -> Horizontal shear is double at interior column.

    3)     Find P& Q force.

    4)     Find moment at beam = always same as moment of column.

    5)     Find shear force at beam=moment at

    2. Cantilever Method

      Assumption:

  • There is a point of contra flexure at the centre of each member.
  • The intensity of axial stress in each column storey is proportional to the horizontal distribution of that column from the centre of gravity of all columns of the storey under consideration.
  • Step-1 Find centroidal distance

    Take moment about A

    Step-2> As per 2nd assumption

    Vertical stresses in column are proportional to their absence from the C.G. of the columns in that storey.

    1>  Consider top storey

    Assume is downward & is upward.

     

     

    Put values

    Take about point of contra flexure i.e. at 0 point.

    Clockwise +ve               Anti clockwise -ve

    Upward      +ve                Downward       -ve

    Consider lowest storey

    Assume are downward

    are upward

    As per 2nd assumption

    Take a moment about 0 point.

     

    Step-3) To find S.F. in proof Beam

    S.F. in AB=1KN

    SF in BC=1+0.42=1.42

    SF in CD=1+0.42-0.28=1.14

    S.F. in EF=6-1=5KN

    S.F. in FG=6+2.57+1-0.48=7.15KN

    SF in GH=6+2.37-1.71-1-1-0.42+0.28=5.72KN

    Step-4) To find Moment in roof beam

    Formula => Moment in roof beam=S.F. in that Beam*Balt of Beam span

    > To find moment in floor beam

    Step -5) To find Moment in column

    Moment in column of floor beam

    Step-6)  S.F. in column

    S.F. AE=2/1.5=1.33KNM

    SF BF=5.55/1.5=3.7KN

    S.F. CG=6.9/1.5=4.6KN

    S.F. DH=3.42/1.5=2.28KN

    S.F. in column EI=1.33*1.5+x+2=10

    X=4KN

    S.F. in column FJ=3.725*1.5+x+2=(17.85+10)

    X=11.128KN

    S.F. in column GK=4.667*1.5+x*2=(17.14+17.85)

          X=13.99KN

    S.F. in column HL=2.28*1.5+x+2=(17.142)

    X=6.86KN

     

    Key takeaways

    1. Find censorial distance

    2. As per 2nd assumption

    3. To find S.F. in proof Beam

    4. To find Moment in roof beam

    5. To find Moment in column

    6. S.F. in column

     


    1. Flexibility matrix method

    The flexibility method is based upon the solution of "equilibrium equations and compatibility equations". There will always be as many compatibility equations as redundant. It is called the flexibility method because flexibilities appear in the equations of compatibility. Another name for the method is the force method because forces are the unknown quantities in equations of compatibility.

    DQ= [DQL]+[F][Q]-compatibility equation

    DQ=External displacement at redundant position

    Displacement at the redundant position because of applied loading

    F=flexibility matrix

    1)     Redundant reaction

    It is also called as Force Method

    In this method, horizontal displacement is neglected

    Degree of indeterminacy=R-E

    R=Reaction

    E=Equilibrium equation

    =4-2

    =2

    The redundant structure is 2.

    1)     Use flexibility Matrix Method

    Step 1)

    =4-2

     =2

    Redundant structure is 2.

     

    Zone

    Limit

    Origin

    M

    CD

    0-2

    C

    0

    0

    x

    DB

    0-2

    D

    -40

    0

    x+2

    BA

    0-6

    B

    x

    x+4

     

      =  - 11100 /EI

    =333.33/

     

    2)     Analyze the beam by flexibility method

    Step 1)

    =4-2

    =2

    The redundant structure is 2.

    Zone

    Limit

    Origin

    M

    CD

    0-4

    C

    0

    x

    DB

    0-2

    D

    0

    x+4

    BA

    0-6

    B

    X

    x+6

     

      =  -19440 /EI

    =-640-2600-51480

    = -54780 /EI


     

    =576 /EI

    KN

    KN

     

    3)     Using the flexibility method analyze the fixed beam AB as shown Draw SFD & BMD

    Step 1)

    =2

    Zone

    Limit

    Origin

    M

    EI

    BC

    0-2

    B

    1

    X

    I

    CA

    0-3

    C

    1

    x+2

    2I

     

    Compatibility Equation

    /EI

    =-380.31 /EI

    =2+1.5

    =3.5 /EI

    =2+5.25

    =7.25/ EI

    =2.66+19.5

    =22.16 /EI

    M=-21.28 KNM

    KN

    KNM

    Key takeaways

    1. Find Degree of indeterminacy

     2. Find reactions (RA & RB)

    3.     Flexibility methods

     


    It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM).

    It is also called a displacement method.

    [S]+[D]+[AM]=[AJ]

    S = Stiffness Matrix

    [D]=unknown joint displacement

    i.e.  

    AM=Fixed end moments at particular points

    AJ=External moment

    1. Important Points

    When is present in your frame

    2. Steps for analysis at stiffness matrix

     1-> Find known rotation i.e.

    2 -> Find fixed end moment

    3 -> Find AM value

    4 -> Find S matrix

    5 -> Put in compatibility equation [S]+[D]+[AM]=[AJ]

    6 -> Apply S.D. equation

    1)     Analyze the beam shown in the figure by stiffness method Take EI= constant

     

     

     

    Step 1) Find fixed end moment

     

    For Span AB

     

    Span BC

     

    Step 2)

     

    = -5+13.33

    = 8.33

    Step 3) Use compatibility equation

    [S]+[D]+[AM]=[AJ]

     

    Apply SD equation for span AB

     

    2)     Analyze the given figure by Stiffness Method

     

    Step1) Find

    Dki=
     

    Step 2) Fixed end moments

     Step 3) S.D. equation

    Step 4) Stiffness Matrix

      =1.33

     

     

     

     

    = -3.34

    =-13.33

    Step 5) Compatibility Equation

    [S+[D]+[AM]=[AJ ]

    /EI

    /EI

     

    3)     Analyse the given figure by Stiffness Method

    Step 1)  

    Step 2) Find fixed end moments

    Step 3) S.D. equation

    -------(4)

    Step 4) Stiffness Matrix

    =1.11

    = -75

    = -60+80

    = 20

    Step 5) Use compatibility equation

    [S]{D} + {AM}={AJ}

    4)     Analyze the given beam shown in the figure by stiffness method

                Take EI=

     

     

    Step 1) Dki =?

    Step 2) Find the fixed end

    Step 3)

    =125

    = -135+60

    =-75

    Step 4) S.D. equation

     

       

    Step 5) Stiffness Matrix

     

     

      

     

      

     

    Step 6) Use compatibility equation

    [S]{D}+{AM}={AJ}

    KNM

    KNM

    KNM

     

    5)     Analysis the given figure

     

     

     

    Step 1) Dki = 2

    Step 2) Fixed End Moments

    Step 3) S.D. equation

    Step 4)

    =-12.5+13.33

    =0.83

    Step 5) Apply compatibility equation

    [S]{D}+{AM}={AJ}

     

    /EI

     

     

    6) Analyze the given fig. By stiffness Matrix method take EI IS Constant 

    S.D. EQUATION

     

     

    Stiffness Matrix

     

     

    Apply compatibility equation

    [S]{D}+ {AM}={AJ}

     

     

    7) Analyze the given beam by stiffness method B is sink by 10mmEI=

    =126.33KNM

    Apply S.D. equation

    8) Analysis the beam by stiffness matrix method draw SFD & BMD

     

    Apply S.D. equation

     

     

    Draw SFD &BMD

     

    Key takeaways

    1. Find known rotation i.e.

    2. Find fixed end moment

    3.  Find AM value

    4. Find S matrix

     5. Put in compatibility equation [S]+[D]+[AM]=[AJ]

     6. Apply S.D. equation

     

    References:

    1. Structural Analysis: DeodasMenon---Narosa Publishing House.

    2. Structural Analysis: Thandavamoorthy---Oxford University Press.

    3. Structural Analysis: A Matrix Approach by Pundit and Gupta, McGraw Hills.

    4. Structural Analysis by Hibbler, Pearson Education.

    5. Structural Analysis: M. M. Das, B. M. Das---PHI Learning Pvt. Ltd. Delhi.

    6. Fundamentals of Structural Analysis: 2nd ---West---Wiley.

    7. Theory of Structures: Vol. I & II by B. C. Punmia, Laxmi Publication.

    8. Theory of Structures: Vol. I & II by Perumull & Vaidyanathan, Laxmi Publication.

    9. Fundamentals of Structural Analysis: K. M. Leet, Vang, Gilbert—McGraw Hills

    10. Matrix Methods for structural engineering. by Gere, Weaver.

    11. Introduction to the Finite element method, Dr. P.N. Godbole, New Age Publication, Delhi.

    12. Finite element Analysis, S.S. Bhavikatti, New Age Publication, Delhi.

    13. Basic Structural Analysis: Wilbur and Norris.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     


    Index
    Notes
    Highlighted
    Underlined
    :
    Browse by Topics
    :
    Notes
    Highlighted
    Underlined