Back to Study material
NT


Unit - 5


Two Port Networks


Open circuit impedance parameters

The Z parameters of a two-port for the positive directions of voltages and currents may be defined by expressing the port voltages V1 and V2 in terms of the currents I1 and I2. Here V1 and V2 are dependent variables, and I1, I2 are independent variables. The voltage at port 1-1’ is the response produced by the two currents I1 and I2. Thus,

 

Z-parameter:

v1 = Z11I1 + Z12I2

v2 = Z11I1 + Z22I2

=

Z11 = I2=0

Z12 = I1=0

Z21 = I2=0

Z22 = I1=0

I1 and I2 are excitations at port 1 & 2 respectively.

V1 and V2 are the responses at port 1 and 2 respectively.

 

Equivalent circuit:

 

Symmetry:

I2=0 =I1 = 0

Z11 = Z22

Reciprocal two port N/W:-

I2=0= I1=0

Z12 = Z21

I1& I2 should be independent

 

Que 1.

Find Z-parameter

Solution: I1 = -I2

Current dependent so Z-parameter doesn’t exist

 

Que 2.

Find z-parameter

Solution: V1 =R (I1 + I2)

V2 = R (I1 + I2)

Z11 = Z12 = Z21 = Z22 = R

 

Que 3.

Solution: V1 = I1Za + I1Zc + I2Zc

= (Za + Zc)I1 + ZcI2

V2 = I2Zb + I2Zc + I1Zc

= (Zb + Zc)I1 + ZcI1

Z11 = (Za + Zc)

Z12 = Zc = Z21

Z22 = (Zb + Zc)

 

Que 4.

Solution: V1 = Za(I1 - I)

(I - I1)Za+ IZc+ Zb(I + I2) = 0

I(Za + Zb + Zc) – I1Za + I2Zb = 0

I =

V1 = ZaI1 - Za

= I1 + I2

V2 = Zb(I2 + I)

= ZbI2 + Zb

= I2 + I2

Z11

Z12 = Z21 =

Z22

Can be solved by Y-A conversion

 

Que 1.

Solution:

Z11I2=0

V1 - (Za + Zb) = 0

= Z11 =

Z21 = I2=0

V2 - Zb +Za  = 0

=

Z12 =

Z22 =

 

Que 2.

Find Z21?

Solution: Z21 = I2=0

I1/2 =

= I1

V2 = I1/2

× I1

= I1

Z21 = I2 = 0 I1

 

Que 3.

Solution: + + 2V1 = 0

2Vx – 2V1 + Vx – V2 + 2V1 = 0

3Vx = V2

Vx =

I1 = V1 +

= 3V1 – 2Vx

= 3V1 – 2

V1 =

+ 2V2 = I2

3V2 - = I2

V2 = I2

V2 = I2

V1

Z11 =

Z12 =

Z21 = 0

Z22 =

 


Short circuit Admittance parameters

Y-parameter:-

I1 = Y11V1 + Y12V2

I2 = Y21V1 + Y22V2

Y11 = V2=0

Y12 = V1=0

Y21 = V2=0

Y22 = V1=0

V1& V2 should be independent

 

Equivalent circuit: -

 

Symmetrical two port N/W: -

I2 = 0 I1=0

Y12 = Y22

Reciprocal two port N/W: -

I1=0  =I2 = 0

Y12 = Y21

 

Que 1.

Solution: V1 – I1R – V2 = 0

V1 – V2 = I1R

I1 = V1 - V2

V2 = I2R + V1

I2 = - V1 + V2

Y11 =

Y12 = Y21 =

Y22 =

 

Que 2.

 

Solution: Y-parameter does not exist as V1 = V2

 

Que 3.

 

Solution: I1 = V1Ya + (V1 – V2)Yc

I1 = (Ya + Yc)V1 - YcV2

I2 = V2Yb + (V2 – V1)Yc

I1 = (Yb + Yc)V2 - YcV1

Y11 = Yb + Yc

Y12 = Y21 = - Yc

Y22 = Yb + Yc

 

Que 4.

 

Solution:

 

 

Que 5:

Find Y-parameter?

 

Solution:

-I1 + – 2V2 + + 2V1 = 0

I1=  V1 +  V1 -  3V + 2V1

I1=  4V1  - 3V2V

V2 + 2V2-  2V1  = 2(I2 +  2V1)

- 2V1 + 3V2 =  2(I2 +  2V1)

3V2 - 2V1 – 4V1 = 2I2

I2  = -3V1 + V2

Y11 = 4

Y12 = -3

Y21 = -3

Y22

 


Transmission parameter [ABCD]

V1 = AV2 - BI2

I1 = CV2 - DI2

A = I2=0

B = V2=0

C = -I2=0

D = V2=0

Symmetrical two port N/W :-

I2 = 0 I1=0

A = D

Reciprocal two port N/W :-

I1=0  =I2 = 0

AD – BC = 1

 

Que 1.

 

Solution:

-3V1 – I1 + + = 0

+ = I1

V1 – V2 = I1

V1 = V2 + I1

V1= V2- I1----------------(1)

I2 = 3V1 + V2 + V2 – V1

I2 = 2V1 + 2V2

2V1 = I2 - 2V2

2V1 = - 2V2 + I2

V1 = -V2 + I2                ----------------(2)

A = -1

B = 

From (1) & (2)

-V2I2I1 V2

V2 - V2I2I1

I1 = V2 + V2I2

I1V2I2

C = 

D = 

 

Que 2.

 

Solution:  V1 = RI1 + V2          ----------------(1)

I2R = V2 – V1

I2 = V2 - V1

I2R = V2 – V1

V1 = I2R - V2                               --------------------(2)

A = 1

B = R

From (2) in (1)

V2 - I2R = V2 + RI1

I2 = -I1

C = 0

D = 1

 

Que 3.

 

Solution: V1 = R(I1 + I2)

V2 = R(I1 + I2)

V1 = V2 + 0I2

A = 1

B = 0

V2 = RI1 + RI2

RI1= V2 - RI2

I1 = V2 – I2

C =    , D = 1

 


H-parameter:

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2

 

Equivalent circuit for H-parameter:

Fig: Equivalent circuit for H-parameter

h11 = V2=0

h12 = I1=0

h21 = V2=0

h22 = I1=0

Symmetrical two port N/W: -

I2 = 0 I1=0

∆h = 0

Reciprocal two port N/W: -

I1=0  =I2 = 0

h12 = h21

 

Que. Find all h-parameter?

 

Solution: + = I1

V1 - = I1

V1 = + I1

V1  = + I1

- + 3I1 = I2

3I1 + V2 = I2

From (1)

I2 = 3I1 + V2[ I1 + V2]

I2 = I1 + V2

h11 =

h12 =

h21 =

h22

 

Key takeaway

Relationship of two-port variables

Fig: 2 Port network

 

Fig: 1 port network

 

Fig: 3 port network

 

z-parameter  open circuit impedance

y-parameter  short circuit admittance

h-parameter  hybrid parameter

g-parameter  inverse hybrid parameter

ABCD-parameter  transmission parameter

A’B’C’D’ parameter inverse transmission

s-parameter  scattering

Used for very high frequency application

 

Relationship of Two Part Variables

Condition for Reciprocity and Symmetry

Sr No.

Parameter

Reciprocity

Symmetry

1.

Z Parameter

Z12 = Z21

Z11= Z22

2.

Y Parameter

Y12 = Y21

Y12 = Y21

3.

h Parameter

h12 = h21

Δ = 1

4.

ABCD Parameter

AD-BC = 1

A = D

5.

Inverse h Parameter

g12 = g21

Δ = 1

6.

Inverse Transmission

A1D1 – B1 C1= 1

A1 = D1

 


Series connection

 

V1 = V1a +V1b

I1 = I1a = I1b

V2 = V2a +V2b

I2 = I2a = I2b

=

=

=

 

Parallel connection

V1 = V1a = V1b

=

=

=

 

Series parallel connection

I1 = I1a = I1b

V1 = V1a +V1b

If two 2-ports are connected in series parallel then overall h-parameter is sum of individual h-parameter

=

 

Parallel series connection

=

 

Cascade connection

V1 = V1a , V2a = V1b   , V2 = V2b

I1 = I1a , I2a = -I1b   , I2 = I2b

Transmission parameter for N/W (A)

Transmission parameter for N/W (B)

Overall transmission parameter

 

Que 1.

Find out overall transmission parameter?

 

Solution:

 

Que 2.

Find overall Y-parameter?

 

Solution:

 

Key takeaway

Relation between Two- Port Parameters:

Δ = X11 X22 – X12 X21 , ΔT = AD – BC

 

 

[z]

[y]

[h]

[T]

 

[z]

Z11           Z12

y22    – y12

Δy     Δy

 

Δh    – h12

h22     h22

A    – ΔT

C     C

Z21            Z22

y21    – y11

Δy     Δy

 

-h21     h

h22     h22

 

1       D

C     C

 

 

 

 

 

 

[y]

Z22     -Z12

Δz     Δz

 

y11               y12

1        -h12

h11     h11

 

D    – ΔT

B      B

-Z21     Z11

Δz     Δz

y21               y22

h21       Δn

h11        h11

-1       A

B      B

 

 

 

 

 

 

 

[h]

Δz      Z12

Z22     Z22

 

1        -y12

y11     y11

 

h11           h12

B      ΔT

D     D

-Z21     -1

Z22     Z22

y21       Δy

y11        y11

H21          h22

-1       C

D      D

 

 

[T]

Z21       ΔZ

Z21       Z21

-y22     -1

y21     y21

-Δh     -h11

h21     h21

 

A        B

1        Z22

Z21     Z21

 

-Δy     -y11

y21     y21

 

-h22     -1

h21    h21

C       D

 


One of the common four-terminal two-port network is the lattice, or bridge network shown in Figure. Lattice networks are used in filter sections and are also used as attenuaters. Lattice structures are sometimes used in preference to ladder structures in some special applications. Za and Zd are called series arms, Zb and Zc are called the diagonal arms. It can be observed that, if Zd is zero, the lattice structure becomes a p-section. The lattice network is redrawn as a bridge network as shown in Figure.

 

Z11 = I2=0

When

If the network is symmetric, then and

When is the voltage across

Substituting the value of from Eq, we have

If the network is symmetric,

When the input port is open,

The network can be redrawn as shown in Fig.

Substituting the value of in Eq, we get

If the network is symmetric,

We have

If the network is symmetric,

From the above equations,

And

 

Q) Obtain the lattice equivalent of a symmetrical T network figure?

A) A two-port network can be realised as a symmetric lattice if it is reciprocal and symmetric. The z parameter of the network.

Z11= 3

Z12=Z21= 2

Z22=3

Since, Z11=Z22

Z12=Z21

The given network is symmetrical and reciprocal. The parameters of the lattice network are

Za=Z11-Z12=1

Zb=Z11+Z12=5

The lattice network is shown below

 

Q) Obtain the lattice equivalent of a symmetric p-network shown in Figure?

A) The Z parameters of the given network are

Z11=6 =Z22

Z12=Z21=4

Hence, the parameters of the lattice network are

Za=Z11-Z12=2

Zb=Z11+Z12= 10

 


For this type of network series are represented as impedance and about cum represent admittance.

Now we can find the transfer function of above network KCL and KVL and then substituting the value in each equation the equation is reached which relative the output to input

Z=

Here, first Y6 is converted as Z6(=1 / Y6) Then combined with Z5 and this is called continued function method. 

 


T-Networks

The circuit for T network is shown below

The z and y parameters of such networks are

Z1+Z3 = z11= I2=0

Z3=z12 = I1=0

Z3=z21 = I2=0

Z2+Z3=z22 = I1=0

As we see z12=z21 T network is always a reciprocal network

The y-parameters can be found as

z= z11z22-z12z21

y11= z22/z = Y1(Y2+Y3)/Y1+Y2+Y3

y22= z11/z = Y2(Y1+Y3)/Y1+Y2+Y3

y12=y21= -z12/z = -Y1Y2/Y1+Y2+Y3

 

Delta or π Network

A general π network is shown below. The y and z parameters can be found by short circuiting output and input ports respectively.

Ya+ Yb =y11 = V2=0

-Yb=y12 = V1=0

-Yb=y21 = V2=0

Yb+ Yc=y22 = V1=0

Since, y12=y21 the z parameters for the π network can be found by taking

Za=1/Ya

Zb=1/Yb

Zc=1/Yc

y= y11y22-y12y21

z11=y22/y= Za (Zb +Zc)/Za +Zb +Zc

z22=y11/y= Zc (Zb +Za)/Za +Zb +Zc

z12=z21=-y12/y= Za Zc/Za +Zb +Zc

 

References:

  1. Engineering Circuit Analysis”, by W H Hayt, TMH Eighth Edition
  2. “Network analysis and synthesis”, by F F Kuo, John Weily and Sons, 2nd Edition.
  3. “Circuit Theory”, by S Salivahanan, Vikas Publishing House 1st Edition, 2014
  4. “Network analysis”, by M. E. Van Valkenburg, PHI, 2000
  5. “Networks and Systems”, by D. R. Choudhary, New Age International, 1999
  6. Electric Circuit”, Bell Oxford Publications, 7th Edition.

 


Index
Notes
Highlighted
Underlined
:
Browse by Topics
:
Notes
Highlighted
Underlined