Back to Study material
Mathematics-III (Differential Calculus)

Module 3

Vector

 


If t is a scalar quantity and if to each value of t is an interval there corresponds a vector then we say that is a vector function of a scalar variable t and we denote it as

 


We define a new operator by

=i + j+ k

 


For a real-valued function f(x,y,z)f(x,y,z) on R3R3, the gradient f(x,y,z)f(x,y,z) is a vector-valued function on R3R3 , that is, its value at a point (x,y,z)(x,y,z) is the vector

f(x,y,z)=(∂f/∂x,∂f/∂y,∂f/∂z)=∂f/∂xi+∂f/∂yj+∂f/∂zk

 


For example, it is often convenient to write the divergence div f as ∇⋅f∇⋅f, since for a vector field f(x,y,z)=f1(x,y,z)i+f2(x,y,z)j+f3(x,y,z)kf(x,y,z)=f1(x,y,z)i+f2(x,y,z)j+f3(x,y,z)k, the dot product of f with ∇∇ (thought of as a vector) makes sense:

∇⋅f=(∂/∂xi+∂/∂yj+∂/∂zk)(f1(x,y,z)i+f2(x,y,z)j+f3(x,y,z)k)

                         =(∂/∂x)(f1)+(∂/∂y)(f2)+(∂/∂z)(f3)

                         =∂f1/∂x+∂f2/∂y+∂f3/ ∂z

                         =div f


Let ϕ be a scalar point function and let ϕ(P) and ϕ(Q) be the values of ϕ at two neighbouring points P and Q in the field. Then,

   

, are the directional derivative of ϕ in the direction of the coordinate axes at P.

The directional derivative of ϕ in the direction l, m, n  = l + m+

The directional derivative of ϕ in the direction of =

 


A solenoidal vector field satisfies

.B=0

 

for every vector B, where del ·B is the divergence. If this condition is satisfied, there exists a vector A, known as the vector potential, such that

B= X A

 

where  X A is the curl. This follows from the vector identity

. B=.( X A) =0

 

If A is an irrotational field, then

A x r

 

is solenoidal. If u and v are irrotational, then

U x v

 

is solenoidal. The quantity

 (del u)x(del v),

 

Where del u is the gradient, is always solenoidal. For a function phi satisfying Laplace's equation

2ϕ=0

 

it follows that ∇ϕ is solenoidal (and also irrotational).

 


A vector field v for which the curl vanishes

 


A conservative vector field (for which the curl del xF=0) may be assigned a scalar potential

 phi(x,y,z)-phi(0,0,0)=-int_CF·ds 
 =-int_((0,0,0))^((x,0,0))F_1(t,0,0)dt+int_((x,0,0))^((x,y,0))F_2(x,t,0)dt+int_((x,y,0))^(x,y,z)F_3(x,y,t)dt,

where int_CF·ds is a line integral.

 


Q1. Calculate the curl for the following vector field.

        F =x3y2 i +x2y3z4 j +x2z2 k

Solution:  In order to calculate the curl, we need to recall the formula.

where P, Q, and R correspond to the components of a given vector field: F =Pi +Qj +Rk 

 

=((x2z2)(x2y3z4) )i +((x3y2)(xz2) )j +((x2y3z4)(x3y2) )k 

 

=(04x2y3z3)i +(02xz2)j +(2xy3z42x3y)k 

Thus the curl is

=(4x2y3z3)i +(2xz2)j +(2xy3z42x3y) k

 

Q2. Find the directional derivative of Θ=x2y cos z at (1,2,π/2) in the direction of a = 2i+3j+2k.

Solution : ϕ = i + k

= 2xy cos zi+ x2 cos zj -x2y sin zk

At (1,2,π/2)        ϕ = 0i +0j-2k

Directional directive in the direction of 2i+3j+2k.

=(0i+0j-2k).     =-

Q3. In what direction from the point (2,1,-1) is the directional derivative of ϕ=x2yz3 maximum? What is its magnitude?

Solution : ϕ = i + k

                         = -4i-4j+12k

Directional derivative is maximum in the direction of ∇Θ. Hence, directional derivative is maximum in the direction of -4i-4j+12k

Its magnitude =    =4

 

Example 4: Prove that   ͞͞͞F = [y2 cos x +z3] i +(2y sin x – 4) j +(3xz2 + 2) k is a conservative field. Find (i) scalar potential for  ͞͞͞F  (ii) the work done in moving an object in this field from (0, 1, -1) to (/ 2,-1, 2)

 Sol. : (a) The field is conservative if cur ͞͞͞ ͞͞͞F = 0.

Now,  cur ͞͞͞F = ̷̷ X                    / y            / z

                                i                           j                    k

                            Y2COS X +Z3        2y sin x-4     3xz2 +2

; Cur = (0-0) – (3z2 – 3z2) j + (2y cos x- 2y cos x) k = 0

; F is conservative.

(b) Since F is conservative there exists a scalar potential ȸ such that

F = ȸ

(y2 cos x +z3) i + (2y sin x-4) j + (3xz2 + 2) k

                =   i +   j + k

    = y2 cos x + z3, = 2y sin x – 4, = 3xz2 + 2

Now, = dx + dy + dz

= (y2 cos x + z3) dx +(2y sin x – 4)dy + (3xz2 + 2)dz

= (y2 cos x dx + 2y sin x dy) +(z3dx +3xz2 dz) +(- 4 dy) + (2 dz)

=d(y2 sin x + z3x – 4y -2z)

ȸ = y2 sin x +z3x – 4y -2z

(c)  now, work done = .d   ͞r

=  dx + (2y sin x – 4) dy + ( 3xz2 + 2) dz

=   (y2 sin x + z3x – 4y + 2z)    (as shown above)

= [ y2 sin x + z3x – 4y + 2z ]( /2, -1, 2)

= [ 1 +8 + 4 + 4 ] – { - 4 – 2} =4 + 15 

 

Q5. If x2zi – 2y3z3j + xy2z2k find dvi and curl at (1,-1, 1)

Solution : div = .= =

                            =  2xz – 6y2z3 + 2xy2z =(2-6+2) = -2

Curl =

            =i(2xyz2 + 6y3z2) – j(y2z2- x2) + k(0-0)

            =-8 at (1,-1,1)

 

Q6. Find the angle between the normal to the surface xy = z2 at the points (1,4,2) and (-3,-3,3)

Solution: let ϕ = xy-z2

                   ϕ= i     =yi + xj -2zk =4i + j -4k

                ϕ = 3i – 3j-6k

But these are the normal to the surface at given points. Angle between two vectors is given by (4i + j -4k).( 4i + j -4k)= |4i + j- 4k|.|-3i-3j -6K|cos θ.

If θ is the angle between then cos θ= = .

 


Let- F be vector function defined throughout some region of space and let C be any curve in that region. is the position vector of a point p (x,y,z) on C then the integral ƪ F .d is called the line integral of  F taken over

Now, since =xi+yi+zk          

And if F͞ =F1 i + F2 j + F3  K       

 

Q1. Evaluate where F= cos y.i-x siny j and C is the curve y= in the xy plae from (1,0) to (0,1)

Solution : The curve y= i.e x2+y2 =1. Is a circle with centre at the origin and radius unity.

=

              =

              =       =-1

 

 

Q2. Evaluate where = (2xy +z2) I +x2j +3xz2 k along the curve x=t, y=t2, z= t3 from (0,0,0) to (1,1,1).

Solution :  F x dr =

 Put x=t, y=t2, z= t3

 Dx=dt ,          dy=2tdt,                dz=3t2dt.

F x dr =

             =(3t4-6t8) dt i  – ( 6t5+3t8 -3t7) dt j +( 4t4+2t7-t2)dt k

 =t4-6t3)dt i –(6t5+3t8-3t7)dt j+(4t4 + 2t7 – t2)dt k

 =

 =+

 

Q3. Prove that   ͞͞͞F = [y2 cos x +z3] i +(2y sin x – 4) j +(3xz2 + 2) k is a conservative field. Find (i) scalar potential for  ͞͞͞F  (ii) the work done in moving an object in this field from (0, 1, -1) to (/ 2,-1, 2)

 Sol. : (a) The field is conservative if cur ͞͞͞ ͞͞͞F = 0.

Now, curl ͞͞͞F = ̷̷ X                    / y            / z

                            Y2COS X +Z3        2y sin x-4     3xz2 + 2

; Cur = (0-0) – (3z2 – 3z2) j + (2y cos x- 2y cos x) k = 0

; F is conservative.

(b) Since F is conservative there exists a scalar potential ȸ such that

F = ȸ

(y2 cos x=z3) i + (2y sin x-4) j + (3xz2 + 2) k =   i +   j + k

    = y2 cos x + z3, = 2y sin x – 4, = 3xz2 + 2

Now, = dx + dy + dz

= (y2 cos x + z3) dx +(2y sin x – 4)dy + (3xz2 + 2)dz

= (y2 cos x dx + 2y sin x dy) +(z3dx +3xz2 dz) +(- 4 dy) + (2 dz)

=d(y2 sin x + z3x – 4y -2z)

ȸ = y2 sin x +z3x – 4y -2z

(c)  now, work done = .d   ͞r

=  dx + (2y sin x – 4) dy + ( 3xz2 + 2) dz

=   (y2 sin x + z3x – 4y + 2z)    (as shown above)

= [ y2 sin x + z3x – 4y + 2z ]( /2, -1, 2)

= [ 1 +8 + 4 + 4 ] – { - 4 – 2} =4 + 15 

 


Q1. Find the work done in moving a particle once round the complete circle x2+y2=a2 , z=0 in the force filed given by = sin yi +(x + x cos y )j.

Solution: work done= = (x+x cos y )dy

                 Using parametric equation x=a cos θ, y=a sinθ

 Work done   = 

          = .

 


If P and Q are two functions of x, y and their partial derivatives ,   are continuous single valued functions over the closed region bounded by a curve C then

 } dx dy.

 

EXAMPLE – 1     Verify green’s theorem for    and  C  is  the  triangle  having  verticles  A (0,2 ) , B (2,0 ) , C (4,2 ).

SOLUTION:       By green  theorem.

                                                  

     Here ,          

(a)   Along AB , since the equation  of  AB  is 

          

Putting 

              

Along  BC , since  the  equation  of  BC , .

              

             

Along  CA , since  the  equation  of  CA,  is  y = 2 , dy = 0.

              

     

(b)     

                                                    

                                                     .

From  (1)  and (2) , the  theorem  is  verified .

 

Example 2: Evaluate by Green ‘s theorem = - xy (xi –yj) and c is r= a (1+ cos )

Sol : By Green’s Theorem , ) dx dy

Now,  . d = 2 y i + xy2 j ) . (d xi + dy j) = 2y dx + xy2 dy )

By comparison                            p= - x2y,                           Q = xy2

2, = - x2            2 + x2) dx dy

To evaluate the integral , we put x = r cos , y = r sin for the cardioid  r = a ( 1 + cos ), we take the integral from

2 . r dr d = 2 3 dr d

= ]a ( 1 + cos )                            dθ = (1+ cos θ)4dθ

=8a4 = a4

 


The integral of the normal component of the curl of a vector F͞ over a surface S is equal to the line integral of the tangential component of F͞ around the curve bounding S i.e

          F͞ )ds =

 

Q1. Use  stoke’s  theorem  to  evaluate 

SOLUTION :     We  have  by  stoke’s  theorem 

          

                     Now ,   

                       

 


The divergence theorem states that the surface integral of the normal component of a vector point function “F” over a closed surface “S” is equal to the volume integral of the divergence of F taken over the volume “V” enclosed by the surface S. Thus, the divergence theorem is symbolically denoted as:

v∫F .dV=sF .n .dS

Sums on surface and volume

EXAMPLE – 1      Use divergence theorem to show that  where S is any closed surface enclosing a volume V.

SOLUTION:     By divergence theorem 

               

                  Here ,    

                                             

                               

                                = 6V

 

EXAMPLE – 2       Show that 

SOLUTION:    By divergence theorem,     ..…(1)

 

                          Comparing  this  with  the  given  problem  let 

Hence, by (1)

                                                                …………. (2)

Now ,  

                             

                              

Hence, from (2), We get,

       

                        

 

 

 


Index
Notes
Highlighted
Underlined
:
Browse by Topics
:
Notes
Highlighted
Underlined