Back to Study material
Mathematics-III (Differential Calculus)

Module 5

Ordinary Differential Equations of Higher Orders

 


Let D be symbol which denotes differential with respect to say of function which immediately follows i.e., D stands for

  

 

Problem

Solve 

Solution:

Auxiliary equation

Solution is 

 

5.1.1 Types of auxiliary equation

  • Auxiliary equation with repeated roots
  • If roots are a, a, b

  • Auxiliary equation with imaginary roots
  • Roots

  • Auxiliary equation with irrational roots
  •  Roots =

  • Solution of
    where X is a function of X
  • a)  Definition:   is defined as that function of X which when operated upon by given X.

    Particular Integral of equation

     

    5.1.2 Types of P.I

    (i) 

                  

    (ii) 

                

    (iii)  

                         P.I=

    (iv)  

               

    (v)      

    (vi)  When any of the above method fails to given P.I

     

    Problem:

    Solve

    Solution:

    Auxiliary equation  

    Complementary function

                    

                                   

                                   

                                    

    Complete Solution is  

     

    Problem:

    Solve

    Solution:

    Auxiliary equation

    C.F is

                   

                       

                  

                   []

                 

                 

       The Complete Solution is  

     

    Example

    Solve 

    Solution:

    The Auxiliary equation is

      The C.F is   y=

    P.I

           

          

          

       The Complete Solution is 


     

    Example

    Solve

    Solution:

    The Auxiliary equation is   

      The C.F is

    P.I

    Now,  

           

                     

       

       The Complete Solution is

     

    Example

    Solve 

    Solution:

    The auxiliary solution is

      

      The C.F is

    Now,

               

                      [Putting ]

                     

                      

                      

    Similarly, we find that

                        

       The Complete Solution is

     

    Example

    Solve

    Solution:

    The auxiliary equation is

    The C.F is

      

                  [Put ]

                 

                   

       The Complete Solution is

     

     

     

    Example

    Solve

    Solution:

    The auxiliary equation is     

    The C.F is

          

          

    But

       The Complete Solution is

     

    Example

    Solve

    Solution:

    The auxiliary equation is   

    The C.F is

          

      

     [By parts]

       The Complete Solution is

     

    Example

    Solve

    Solution:

    The auxiliary equation is    

    The C.F is

    Here ,   ,  .    Let

    Now, 

              

                Put

                  

                   

             

     Multiply by in the numerator and denominator

    Put  

       The Complete Solution is

     

     

    Example

    Solve

    Solution:

    The auxiliary equation is   

    The C.F is

    Now,      

     

     

    And 

       The Complete Solution

     

    Example

    Solve

    Solution:

    The auxiliary equation is       

      

    The C.F is

     

                                       

    And,  

    Now, 

     

    And 

         

            And

        The Complete Solution is

                 

     


    We assume

    Where

     

    Example:

     Apply variation of parameter to solve   

     Solution:

    Auxiliary equation is  

    Solving quadratic equation 

    C.F 

         

    P.I 

       

        

     [Put  ]

        

    Put

            

            

     The complete solution is  

     


    The general power series solution method.

    power series represents a function f on an interval of convergence, and that you can successively differentiate the power series to obtain a series for f , f , and so on.

    Example 1 Use a power series to solve the differential equation y - 2y = 0.

     

    Solution     Assume that y =  is a solution. Then, y   = Substituting

    for  y   and  -2y,  you  obtain  the  following  series  form  of  the  differential  equation.

    y  - 2y = 0

     00

    anxn  = 0

    n =1

           =  2anxn

     

     

    L (n + 1)an +1xn = L 2anxn

    n =0 n =0

    Now, by equating coefficients of like terms, you obtain the recursion formula

    (n + 1)an +1 = 2an, which implies that

     


    Differential Equation which arises in numerous problems, especially in those exhibiting spherical symmetry. Legendre's Differential Equation is defined as:

    where  is a real number. The solutions of this equation are called Legendre Functions of degree .

    When  is a non-negative integer, i.e., , the Legendre Functions are often referred to as Legendre Polynomials .

    Since Legendre's differential equation is a second order ordinary differential equation, two sets of functions are needed to form the general solution. Legendre Polynomials of the second kind  are then introduced. The general solution of a non-negative integer degree Legendre's Differential Equation can hence be expressed as:

     

     

     

    5.4.1 Functions

    Rodrigues' Formula: The Legendre Polynomials  can be expressed by Rodrigues' formula

     where 

    Generating Function: The generating function of a Legendre Polynomial is

    Orthogonality: Legendre Polynomials , , form a complete orthogonal set on the interval . It can be shown that

    By using this orthogonality, a piecewise continuous function  in  can be expressed in terms of Legendre Polynomials:

    where:

    This orthogonal series expansion is also known as a Fourier-Legendre Series expansion or a Generalized Fourier Series expansion.

    Even/Odd Functions: Whether a Legendre Polynomial is an even or odd function depends on its degree n.

    Based on ,

     Pn(x) is an even function when n is even.

     Pn(x) is an odd function when n is odd.

    In addition, fromPn'(x),

     Pn(x) is an even function when n is odd.

     Pn(x) is an odd function when n is even.

    Recurrence Relation: A Legendre Polynomial at one point can be expressed by neighbouring Legendre Polynomials at the same point.

     

     

     

     

     

    Bessel Differential Equation

    The Bessel differential equation is the linear second-order ordinary differential equation given by

     x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0.

     

    Equivalently, dividing through by x^2,

     (d^2y)/(dx^2)+1/x(dy)/(dx)+(1-(n^2)/(x^2))y=0.

     

    The solutions to this equation define the Bessel functions J_n(x) and Y_n(x). The equation has a regular singularity at 0 and an irregular singularity at infty.

    A transformed version of the Bessel differential equation given by Bowman (1958) is

     x^2(d^2y)/(dx^2)+(2p+1)x(dy)/(dx)+(a^2x^(2r)+beta^2)y=0.

     

    The solution is

     y=x^(-p)[C_1J_(q/r)(alpha/rx^r)+C_2Y_(q/r)(alpha/rx^r)],

     

    where

     q=sqrt(p^2-beta^2),

     

    The solution is

     y={x^alpha[AJ_n(betax^gamma)+BY_n(betax^gamma)]   for integer n; x^alpha[AJ_n(betax^gamma)+BJ_(-n)(betax^gamma)]   for noninteger n.

     

     

     


    Index
    Notes
    Highlighted
    Underlined
    :
    Browse by Topics
    :
    Notes
    Highlighted
    Underlined