Back to Study material
EM-2019

UNIT 5

Kinematics of Particle

 


Motion:

A body is said to be motion it is changing its position w. r.t. reference point.

Speed:

Role of change of distance w.r.t. time but irrespective of the direction. It is scalar quantity. It is always positive.

Velocity: (V=x/t)

             Rate of change of displacement w.r.t. time in a particular direction. It is vector quantity.

Displacement: (change in position of particle)

             Shortest distance between initial and final position of a particle during motion. It may positive or negative. It is denoted by ‘s’ or ‘x’.

Distance:

              Total path covered by α particle during given time interval. It is always positive. It is denoted by ‘s’ or ‘d’.

                                  Distance Displacement

Average speed and instantaneous speed:

The avg. speed of particle is the distance travelled in the particular time interval.

                If particle travels the distance ‘s’ in the time t1 to t2 then avg. speed,

Vavg =

                Instantaneous speed is the speed of particle at a particular instant when time interval approaches to zero. Then instantaneous speed,

V =

Average velocity and instantaneous velocity: -

Avg. velocity is the ratio of displacement as (or ∆x) to the time interval ∆t

                   Avg. velocity =∆x/∆t

Instantaneous velocity is the role of change of displacement when time interval Approaches to zero.                                                

                   Instantaneous velocity=

V=dx/dt

Velocity may be positive or negative.

Avg. acceleration and instantaneous acceleration: -

Avg. acceleration is the rate of change of velocity of a particle for the time interval ∆t.

A (avg.) = ∆v/∆t

 

Instantaneous acceleration is the rate of change of velocity of a particle at particular instant when time interval ∆t approaches to zero.

                     Instantaneous acceleration =  A  == dv/dt

                      But         v = dx/dt            ;    A =  d/dt  (dx/dt)

                                                                  ;    A =x/

 By   chain   rule ,

 

A =   dv/ ds    x  ds/dt

 A   =   dv/ds x v                                  

; A  =  v. dv/ds

 It may be positive or negative

Rectilinear Motion

Linear (Rectilinear) motion: -

The motion of the particle along the straight line is called as Rectilinear motion.

Uni-directional Particle moving only in one direction.

Uni-directional Forward & reverse motion of particle.

Uniform motion (u.m.)

[motion with zero acceleration]: -

If the particle is moving with constant velocity and zero acceleration.

The motion the particle is called as uniform motion.

Thus, here,

V==  constant.

Taking   integration,

V

V

X = V  ×  t

X   =   velocity   x   time

 

Examples on Uniform Motion – Velocity constant

                 (acceleration is zero)

1)In a race of 100 m distance, a runner   runs at constant velocity   from 30 m to   100 m   position at   velocity   12 m/s.   Find the   time   required for   the   runner    to   cover   the   distance   from   30 m position to 70 m   position.

V  = 12 m/s

X1= S1 = 30m

 X2=  S2 = 70m

Distance covered / displacement =  find  position  -  initial  position.

                                                 X =S = S2  - S1  =  X2 – X1

=  70  -   30

X  =  S  =40 m

For uniform   motion  

Displacement / Distance     =   V x  T

40            = 12  x  t

T    =    40 / 12

T     =   3.3.33  sec.

2)  a  train  accelerates  uniformly  &   gains  the   speed  of  90  kmph.   &  runs  at   this   speed  for  17  minutes  before  getting   slowed   down   due  to   work  in  progress .Find  the distance   covered  by the  train  while  running  at  the  constant  speed.

V  =90  kmph  = 90  x    =  25  m/sec.

T  =  17   minutes  =   17  x  60  =1020  sec.

Distance  covered  /  displacement

Of train  while  running  =   v  x  t

At  constant  speed

S  =  x                                       =   v   x   t

S  =    x    =  25  x  1020

=   25500  m.

S  =     x     =   25.5   km

Train  covers  25.5  kms   before  getting   slowed  down   due  to  work  in  progress.

sRectilinear  motion  with  uniform  (constant)  acceleration :-  [  U.A.M.  -  uniform  acceleration  motion]

IMG_20191223_120603.jpg

 

   Consider   linear  motion  of  particle  starting  from   a  &  moving  along   ox  with  uniform   acceleration .

  let  P  is the  position   of  particle   after   T   sec.

 

  Let          u  =  initial   velocity

V  =  final  velocity

                       T  =   time taken  by  particle   to  change  its  velocity  from  u  to  v.

A  =   uniform  positive   acceleration 

            X   or  S  =  Displacement    in      ‘ t ‘   seconds .

 

Since  ,   in  ‘t’  seconds  velocity  of  particle   has   increased  steadily  from   ( u )  to  ( v )

At  the  rate   of  acceleration  ‘a’  ,

Total  increase  in velocity

                                               =   at

Final  velocity  ,   V  =  u  +  at       -    (1)

Average  velocity   =  ()

 

As  we  know  that  ,   Displacement  by  the   particle  ,

S  =   avg.   velocity   x   time

               S   =  ()  t     (11)

Substituting  value  of  v   from   equation   (1)

 

S  =  ( t

=  ( t2)

=  (t2)

 = (ut  + t2)

S  =ut + at2                                 -  eqn..  (11)

From  eqn..  (1)  ,                V  =  u  +  at

T  =           -   put  this  value  in  (11)

S  = ()

=  v2 – u2 /  2a

2as    =  v2  -  u2

V2  =  U2  +  2as                   -   (iv)

 

Thus  the equations  of  motion  are

1)     V = u + at

2)     S = ut  + at2

 V2= u2 + 2a

 

Examples  on – motion  with  uniform  acceleration

                UAM – uniform acceleration  motion.

                    (acceleration is  constant )

1)     a  car starting  from  rest  is  accelerated  at  the  rate  of  0.4 m/s2  , find  the  distance  covered  by  the  car  in  20  seconds.

 

GIVEN :-   initial  velocity  =  u=  0              ---------------- car  is  starting  from  rest.

Acceleration  =  a =  0.4  m/s2

                                     Time    =  t  =  20  sec.

 

We  know  that  the  equation  of  motion  for  displacement.

 

S  =ut  + at2

=  (0 x 20 )  +    x 0.4  x202

 

S =  80m.

Car  will  cover  80 m  distance  in  20  seconds  .

2)     a train  travelling  at  27  kmph  is   accelerated  at the  rate  of  0.5  m/sec2 .  what  is  the  distance  travelled  by  train  in  12  seconds .

GIVEN :-      initial  velocity   =  u  =  27  kmph  =   27  x    =  7.5  m/sec.

Acceleration  = a = 0.5  m/sec2

Time  =  t  =  12  sec.

 

From  eqn   of  motion  ,

S  =ut  +   at2

=  (7.5  x  12 )  +   (   x  0.5  x 122)

                           S =  90 +  36

  S =  126  m.’    ----------------------  distance travelled  by  train

A   car  comes  to  complete  halt   from  an  initial   speed  of  50   kmph   in  distance   of  100  m.    with   same   constant  retardation  what  would  be  stopping  distance  from  an  initia  speed   of  70  kmph ?

GIVEN:-                             U1  =  50  kmph   =  13.89  m/sec.

                                           S1    = 100 m

V1  = 0

When  initial   speed  is  50  kmph  ,

 

We  know  that  ,       V12= U12  +  2 as1

0        = 13.892  + 2a  x  100

0    =  192.9  +   200  a

A  =

A  =   -0.964   m/s2        (-ve  sign  indicates  retardation)

When  initial   speed   is  70  kmph

                                                        i.e.     u  =  70  kmph   =  70  x    = 19.44 m/sec

 

then  ,

                           V22=  U22  +2 as2

0   =  19.442   +   2   x   (-0.964)    x  S2

0  =   378.09  -1.928  S2

                                    -1.928  S2   =  -378.09

 

                           S2   =   

                      S2   =   196.10  m

If    the   initial   speed   of  the   car   is  70  kmph  ,  then  it  will   stop   after   covering  196.1  m  distance.

Two  trucks  A  &  b  travelling  in  the   same  direction   on  same  adjacent  lanes  are  stopped  at  traffic  signal.  As  the  signal   turns  green  ,  truck  a  accelerates  at  a constant  rate  of  20  m/sec2 .  three  seconds  later , trucks  B   starts   and  accelerates  at  3.6  m/s2 .find   (1)  when  &  where  truck  B  will  overtake   (2)  speed  of  each  truck  at  the  same  time .

Truck  A     u  =  0 m/s

a  = 2 m/s2

Diagram

IMG_20191223_123815.jpg

 

 

 

Truck  B      u  =  0  m/s

                                            a=  2  m/s2

tb  =  time  required  =   (  tA  -  3)              (  from  signal  to point  p  ).

(1)    For truck  a  ,

Distance  covered  from  signal  to point  ‘p’  =  Sa

 

                              SA   =  utA  +  atA2

=  0  +    x  3.6  ( tA  -  3)2

                               SB   =    1.8  (tA -  3)2--------------------------(11)

As  the  distance  covered  by  both  trucks  from  signal  to point  P  is  same  ,

SA  =  SB

TA2  =   1.8   (tA – 3)2

TA2  =  1.8  (  tA2  -  6tA  + 9  )

   TA2-  1.8  tA2  +  10.8  TA   -  16.2   =  0

           -0.8tA2  +  10.8  tA  - 16.2  = 0

Solving  aboveeqn  ,    tA=   1.718  sec   &tA =  11.78   sec.

As  tA  =  1.718  <  3  sec  ,   it  can’t  be  considered  . 

                   TA   =   11.78  sec

Truck  B   will  overtake  A  at  tA  =  11.78  sec.

Distance  covered  by  truck  a  during  11.78  sec  ,

SA  =  tA2  =  11.782  =  138.76 m.

 

Truck  B  will  overtake  truck  A  after  138.76 m   from  signal.

3)  speed  of  each  truck.  After  t=  11.78  sec  &  at   s  =  138.76 m.

VA  = u + at

VA  =uA  + aAtA

VA  =   0 +  2  x  11.78

VA  =  23.56   m/sec.

 

Similarly  ,

VB  = UB  +  aBtB

                     VB=  0+  3.6  +  ( tA – 3)

                          =   0  +  3.6  (11.78 -  3)

VB  =   31.608  m/sec.

 

Ans:

       Time required  to  overtake   =  11.78  sec.

       Distance   covered  before  overtaking  =  138.76 m

VA  =   23.56  m/s

VB  =    31.608  m/ sec.                     while  overtaking

A train which is at rest  starts  from  station  with  constant  acceleration  of  5 m/s2  , 3  seconds  later  another  train  passes  the  same  station  on  the  same  line &  in same direction  with  constant  velocity  .  find  the  velocity  of  2nd  train  to  just  avoid  collision  .

    Let    train  A   =  a  train   starts  from  the  station  .

Train  B   a train  passing  the  same  station  after  3  seconds  .

(1)  Consider  train  A    -  constant   acceleration   (UAM)

      U   =  0………..starts  from  rest 

      A    =   5  m/s2

Let  tA  =  time  taken   by   train  to  cover  SA  distance   .

 

         S =  utA  +       atA2

S  =   (0  x  tA )   +    (  x   5   x    tA2  )

SA  =   2.5  tA2              -  (1)

2)    consider    Train  B   -  constant  velocity  -  (UM  )  -  :-

  Let    tB  =  time  taken  by  train   B   to  cover  SB  distance 

TB  =   (  tA -  3  )  sec

For  uniform  motion  ,

   S    =  velocity   x  time 

  SB =   vB  x   ( tA– 3)     -------(2)

Now  to  just   avoid   the  collision  distance  travelled   by  both   trains  must  be  same  .

                  SA   =  SB

        2.5   tA2  =   VB  (  tA  -  3)

             VB   =   2.5  tA2/  (tA  - 3 )   ----------------------  (3)

But  ,

As  velocity  of  train  B  is  constant   .

i.e.        VB=  constant  ,

dvA /dt  =  aB =  0

thus,

dvA /  dt      =    d  /  dt     (  2.5  tA2  /  tA   -   3  )

using  quotient  rule  to  take  derivative.

dvA/ dt     =  aB =   ( tA-3 )   ( 5tA)  -  ( 2.5  tA2)  (1)  /  (  tA – 3 )  2

 

0          =    5tA2  -   15  tA  -  2.5  tA2 /   (  tA – 3)2

             0       =  5 tA2  -  15  tA  -  2.5  tA2

2.5  tA2-   15  tA  =0

2.5   tA2=  15tA

2.5  tA  =  15

 

 

[  TA  =  15  /  2.5  ]

 

{ TA  =  6  sec.  }

 

From  equation  (1)   

                                   S    =    2.5   tA2

                                         =    2.5   x  6  x  6  

                                  SA    =   90  m

From  equation    (3)

VB  =  2.5  tA2  /  (  tA  -  3)

                                     =2.5  x   6 2  /  (6 -3 )

 

[  VB =  30 m/sec ]

From equation   (2 )

SB  = VB  (tA– 3 )

= 30 (6 -3 )

SB  =  90m

 

Ans:-

Velocity  of    second    train   to  just  avoid  collision  should    be 

[ VB= 30 m/sec ]

A  car  A   starts   from  rest  and  accelerates  uniformly  on  the straight  road.  Another   car  B   starts  from  the  same  point  after   6 sec; with  zero  initial  velocity  &  accelerates  at  5m/sec2  uniformly.  If car B  overtakes  car  A  at 400m  from starting   point;  determine  acceleration  of  car  A & velocity  of  each  car  while  overtaking 

 

IMG_20191223_120731.jpg

 

 

(1 )    for car A -  (UAM ) from 0 to p. 

  U = 0                   S = 400m

aA= ?                  time  of  journey  from  0 to  p=  t

                                S =ut +   aBt2

400  =   0  +  0.5   x  5  x  (  t   -  6  )2

                         400 /  2.5  =    ( t- 6 )2

( t – 6)2    =    160  

T  -  6    =   12.649

                [    t  =   18.649  sec  ]         -----    put  in  equation  (1)

aA=   800  /  t2   =    800  /  18.6492   =    2.3   m/s2

                     [aA=  2.3  m/s2]

VA(  at p)  =   u +  at 

              =   0 +  (  2.3  x  18.649  )                              {   VA  =  42.  9  m/s  }

VB(at p)   =  u  +  at 

             =   0  +  5  x  (   18.649  -  6)                          {   VB   =   63.245  m/sec  }

Two  cars  A  &  B     travelling    at  constant  speed  of  160   kmph   car  A   leads  car   B   by  40  m.  at  t=0   ,   both  car   accelerate  at constant  rates  ,  at   t =  8   sec   ,  car  B   passes  car  A   &   velocity  of  car   A   is   220  kmph.  Find   accelerations   of  A&  B  .

 (1)Car   A   :  -  

                            UA=  160kmph    =  160   x   5/18   =   44.45  m/sec.

                            VA =   200  kmph  =  220  x  5/18   =   61.11  m/sec.

T  =  8 sec.

We  know  that   , 

V  = u  +  at 

                           VA =   uA  +aAt

61.11  =  44  .45   +   aA   x  8                                            

IMG_20191223_120814.jpg

 

aA=      (  61.11  -  44.45) /  8

{  aA =  2.08  m/sec2

   As,

         S   =  ut   +     at2

SA  =UAt   +    aA t2

              =    44.45  x  8    +     x   2.08   x  82

SA  =  422.16   m  .

 

At   t=  8  sec  ;   car  B   passes   car  A   thus   car   B  has   to  travel  the  distance   (   SB  =  40  +  SA)   as   initially   car  A  was  leading  by  40 m   distance  .  thus  in  the  same  time   t =  8  sec  ;  car  B  travels  (  40  +  SA)  distance  .

SB  =   40  +  SA  =   40   +  422.16   =  462.16  m.

  We know  that  ,

                                  SB   = UB  t    +       aB t2

      But   initially   both   cars   are  having  same  velocity  .

                           UA   =UB=  44.45  m/sec.

                     462.16   =   44.45  x  8    +     x  aB   x   82

                     462.16    =     355.6     +    32  aB

aB=   ( 462.16  -  355.6) /  32

                      {aB =   3.33  m/s2}

Displacement  in  nth   second :-

(  with  uniform  or  constant  acceleration )

IMG_20191223_120849.jpg

 

Consider   the  motion  of  particle  moving  along  straight   line  with   uniform  /  constant 

Acceleration.

 

Let  the  particle   start  from  0  &  moves  along  ox.

Let     u= initial  velocity  of  particle 

           V=  final  velocity  

a=  constant  positive  acceleration

 

let- the particle   move  from  0 to  Q  in  ‘n’  seconds  &

the  particle  move  from  0 to p in ‘(n- 1)’  seconds

 

Sn= Xn =  displacement  in  n  seconds

Sn-1 = Xn-1 = displacement  in (n-1)   seconds

 

Therefore  S =  X  = Sn- Sn-1 = Xn– Xn-1 = displacement  in  nth   second

          n =  no. of  seconds .

 

we  have  equation  of  motion  for  displacement,

                    S = ut +   ½ at2

 

For   t= n,

Sn= u (n) + ½  an2

 

For  t = n-1,

                    Sn-1= u (n-1)  + ½  a (n -1) 2

 

 

       Displacement  by  particle  in  nth  seconds is   given  by,

S  =Sn- Sn– 1

                                    Or

X  =Xn– Xn-1

 

      S = [  un + ½  an2]  -  [  u(n -1)   +  ½ a  (n -1)2]

                              S  =   un  +  ½ an2  -   [   un  -  u   +  ½  a  (  n2     -   2n  +  1)

                              S  =    un  +  ½  an2  -  un  +  u  -   ½  a   (  n2  + 1  -2n )

                             S  =  un   +  ½  an2  -  un  +  u  -  ½  an2  -  ½ a  +  an 

                             S   =   ½  an2  +  u  -  ½ an2    -   ½  a  +  an

                            S   =   u  -   ½  a  +  an 

                          S     =   u  +  a  (  -  ½  +  n )

=  u  +   a  (  n  - ½ )

                           {  s  =  u  +  a/2  (  2n  - 1 )  }            OR.

{  x  =  u  +  a/2   (  2n -  1 )  }

 

Distance covered  /  travelled  :

(1)   For  uni –directional  motion  along  straight  line   distance  covered  in 

          T   sec  .is  given  by  ,

D  =  |  xt  -  xo  |   =   |  St  -  So |

(2) for  uni – directional  motion  ,  i. e.  when  particle   reverses  the  direction  in between   0  &  t  sec  :

Assume  that  particle  velocity  is  zero  at  t1  ,  t2 , t3  ( where  t1 , t2 ,t3    lie  between   0  &  t  )  .  then  ,

 

          D =  |  xt1  - x0|  +  | xt2  -  xt1 |  +  |xt  - xt2|    OR

          D  =  |  st1  -  s0|  +  |st2  -  st2 |  +   |st -  st2 |

Examples  on  distance  travelled  in  nth  second .

          (UAM)

 A train  starts  from  rest  &  move  with  uniform  acceleration  along  the  straight  line .  it  covers  120 m  distance  in  8th  second  find  uniform  acceleration  of  train  .

For  train    ,   u  =  0   ,      Sth   =  120  m.

Using  distance  travelled   in  nth  second  ,

Sth=  u  +  a/2  (  2n – 1)  

                        S th   =   u  +  a/2  ( 2n – 1)  ……….  Here  n  =8    sec.

                      120   =   0  +  a/2  (2  x  8  - 1 )

                     120   =  7.5 a

              [   a   =  16  m/sec2 ]

 

A  particle  covers  90m  in  5th  sec  ;  &   140 m   in  9th  sec   of   its  journey  with  uniform  acceleration  find  the  distance  travelled   in  15th  sec.

When  n=5   ,            S  =  90m

N  =  9  ,        S =  140 m

                                                                using  1st  condition

Sth=  u   +   a/2  ( 2n – 1)

A 90    =   u  +   a/2  ( 2  x  5  -  1)

  4.5a  +  u  = a90  …………….(1)

Using  2nd condition  ,

Sth =   u  + a/2 ( 2n-1) 

140  =   u  +  a/2  (  2 x a – 1)

  140  =  u  +  8.5  a

   8.5 a  +  u  =  140  -----------(2)

Solving  (1)  &  (2)   ,  we  get  

[ a =  12.5 m/s2]      &  [ u = 33.75m/sec.]

S15th=  33.75  +  12.5/2  ( 2  x  15  - 1)       =   [215 m]

 

Motion  under  the  gravity

(  linear  motion  with  uniform  gravitational  acceleration)

In  this  type  of  motion  ,  the  vertical  motion  of  the  particle  under  the  influence  of  constant   gravitational  acceleration   is  considered .

G  =  9.81 m/s2   ----- gravitational  acceleration .

 

The  equations  of  motions  for  motion  under   the  gravity   are  as  follows  :-

a)when  particle  motion  is  towards  earth  surface 

          (   downward  motion  of  particle  )

V  =  u  +  gt

V2  =   u2  +  2gs

S  =ut  + ½ gt2

b)when  particle  motion  is  away  from   earth  surface  against  the  gravity  force 

(  upwardmotion )

V  =  u  - gt

V2  =  u2  -  2gs

    S    =   ut  -  ½  gt2

 

Examples  on  motion  with  uniform  acceleration  (UAM)

Motion  under  the  gravity 

(  g =  constant  )

Q.1     From   the  top  of  the   tower  which  is  40m  high  ,  a  stone  is  thrown  vertically  upwards with a velocity of 8 m/s. How long does the stone take to reach the ground? Also  find  out  the  velocity  with  which  it  strikes  the  ground.

Diagram

 

IMG_20191223_120916.jpg

 

U  = 8m/sec.

Tower  height  =  40 m.

 

1]  consider upward  motion  of  stone

 

When  stone  is  thrown  upward,

Let  h = max. height  reached  by  stone.

we have  v= u + gt

As stone will stop  at max  height  thus  v1 =0

Also  g = - 9.81 m/s2  for  upward  motion.

Thus,  equation  becomes ;

                                       V1 =  u1 – gt1

                                         0 = 8- 9.81 x t1

                        t1  =8/9.81

T1  = 0.81 sec     time required to reach max. height

 

Now,       

Let  h =  max.  height  reached  by   stone   during  upward  motion 

        thus we  have,  v2  =  u2 +  2 as;

Here  for upward  motion  g  =  - 9.81 m/s2

 

                        V12=  u1  -  2gh 

                         0   =  82   -  2  x  x  9.81  x  h 

0  =  64   -   19.62  x  h 

                        19.62 h  =  64 

                                  h  =   64/  19.62 

[  h  =  3.26  m]  -----------above  the  tower.

 

(2) now  consider  downward  motion  of  the  stone  from  the  max .  height  (h) .

           Thus   in  this  case  ,  stone  will  cover  (  h  +  40 ) 

Meter  distance  while  coming  down .

   S2  =  h  + 40  =  40  +  3.26  =  43.26 m

While  starting  downward  motion   ,

Initial  velocity  =  u2 = 0

&final  velocity   =  V2  =  ?

 

We  have  ,       V2  =  u2  +  2as  .

As  g  =  9.81  m/s2    for  down ward  motion  ,

 

  V22  -  U22  =  2gs  .

V22  -  0  =  2  x  9.81  x  43.26

V22  =    848.76

[V2   =    29.1  m/sec]       with  this velocity  ,  stone  will strike  the  ground  .

Now,  let  t =  time  req.  for  stone  to  reach  ground  level  from  the  max  height  (h).

We  have ,

  v2 =  u2  +  gt2

  29.1  =  0  + 9.81  x  t2

                        t2=  29.1/9.81

[t2  =   2.97 sec  ]     -------for  downward  motion .

total  time  required  for stone to reach the ground =  time required  upward motion  +  time  required  for  downward motion

 

T  =  t1  +  t2

T  =  0.81  +  2.97

[  t  =  3.78  sec.]

 

Q.(2)  A  ball  is  released  from  a  building   (  top  of  building  )  of  height  ‘h’  meter  .  it  comes  a  vertical  distance   h/2  during  its  last  second  of  descend  .  find  the  height   of  building  .

   let      h  =    total  height  of  building 

Let   the  ball   is  released  from   the  top  of  the  building  .  from  point  ‘A’.

B.  is  the  start  point  at  last  second  of  the  travel  of  the  ball   .

G.  is  the  ground  level  .

T1  =  time  required  A  to  B.                                          

IMG_20191223_120947.jpg

 

h/6  =   distance  covered  during  last second.

T2  =  time  required  from  B  to  G.

5h/6  =  remaining  distance  covered  .

T  =   total  time  req.   =    t1  +  t2  =  (  t1  +  1)  sec.

1)       Consider   motion  from  A  to   B  :-

U1 =0   ,   g  =  9.81  m/s2    ,    S1 =  5h/6

 

From  equation   of  motion  ,   S   =   ut   +  ½ at2

S1  =  u1t1   +  ½ gt12

Putting  the  value  , 

  5h/6  =   0  +  ½  x  9.81   x  t12

  5h  =   29.43  t12

  h      =   5.886 t12-----------(1)

2)     Consider  motion  from  A    to  G  .

S   =  ut  +  ½ gt2

H  =  0  +  ½  x  09.81  x   (  t1+ 1)2

H  =   4.905(  t1  +  1) 2       -----(2)

 

Equating  (1)  &  (2)  as   LHS  are  same  ,

 

  5.886 t12  =   4.905  (  t1  +  1) 2

                     =  4.905  ( t12  +  2t1  + 1)

5.886 t12  =  4.905  t12  +  9.81  t1  +  4.905

0.981  t12  + 9.81  t1  -  4.905 =  0  ----------------solving  this 

[t1=  10.477  sec  .]       h   =  5.886  t12  =  [  646.09 m]

                  [ height  of  building  =  h  =  646.0 m]

 

 

Q.3  A  particle  freely  falls  50  m   under  gravity   in a  certain  second  .  calculate  the  time  required  to  cover  next  50 m.

Consider  particle  freely  falls  from  point 

A  to B    (50m)   in  1  sec  .

  t1  =  time  req.  from  A  to  B  .

T1  =  1  sec.                                                                             

IMG_20191223_121006.jpg

 

Let  particle  covers  next  50 m  i.e. 

From  B  to  C  in  time  t2  sec  . 

 

1) consider  motion  from  A  to  B.  

U1  =  0  ,   t1  =   01  sec  .  ,   S1  =  50m.

Using  equation  of  motion,

   s1 = u1t1 + ½ g t12

     50  =  u1  + 9.81 x 12

     st =  u1  +  4.905

  u1 =    45.095m/sec 

V1  =   velocity  at   point  B -  is  given    by  ,

                                            V1   = U1  + gt1

= 45.095  +    (9.81 x  1

                                            V1    = 54.905m/sec

 

2)    consider   the  motion   from  B to  C:-

                       At the start point of motion  i.e.  at B,

V1  = 54.905  =  u2

&           s2     = 50 m(from  B  to C).

Thus,

A   stone    is  thrown   vertically   downwards  from  the  top of  a 49m  high  tower.  A   second  later   one  ball  is  thrown  vertically   upward   from   the  ground   with  a  velocity  of  12.5m/sec.  at  what  distance  above  the  ground  will  both   the   stones   cross  each  other?

IMG_20191223_121032.jpg

 

Let  A – point  from  which  stone  is  thrown 

       G -  ground level (ball is thrown up)

        C -  crossing  point  of  stone  & ball

Let  d  =  distance  covered  by  stone  from

       A to  c  (crossing  point)

(49-d)  =  distance  covered  by  ball  from  ground  to  crossing  point  ‘c’

T  =   time taken  by  stone  to  reach  from  A  to C

(T -1)  = Time taken  by ball to  reach  from   G  TO C.

        (1)         Consider   motion  from  A  to  c  (for  stone)  u =0

S  =ut +  ½  gt2

D  =  0xt +  ½ x 9.81 t2

  d =  4.905 t2   ………(1)

(2)           consider   motion  from   G  TO  C

S  =ut – ½  gt2

(49-d)   =  12.5t x (t -1) – ½ x 9.81 x  (t-1)2

                         = 12.5 t – 12.5 – 4.905(t2 -2t + 1)

          49 –d  =  12.5 t -  12.5  -4.905t2  +  9.81 t  - 4.905

  d=  4.905  t2  -   22.31t  +  66.405   -------(2)

Equating  (1)  & (2)

  4.905 t2  =  4.905 t2  -  22.31 t  +  66.405

  22.31 t  =   66.405

  [ t  =  2.37  sec]     3sec

  d  =  4.905  x  t2  =  4.905   x   32

[d  =  44.14 m]

  (49 – d) =  4.85 m.  -------[  both  objects  cross  each  other  at  4.85m  above  ground.                 

 

Water   drops  from  a  tap  at  the  rate  of  five  drops  per  second  .  determine  the  vertical  separation  between  two  conservative  drops  after  the  lower  drop  has  attained  a  velocity  of  7 m/sec.

Rate  of  droplets  =  5  drops  per  second  .

time  difference  between  two  consecutive  drops  =  1/5  =  0.2  sec.

 

Let  us  assume  that  ,  1st  or  lower  drop  attains   the  velocity  of  7  m/sec   after  ‘t1   sec.

Then  2nd  drop   will  take  (t1  -  0.2)  sec.  =  t2

IMG_20191223_121115.jpg

 

1)consider   first  drop  &  its  motion  .

U1  =   0      ,   v1 =  7  m/sec  

  v1 =  u1  +  gt1

7  =  0  +  9.81  xt1

                       [  t1  =  0.714  sec.  ]

During  this  time  ,  distance  travelled   by  1st  droplet  will  be ,

S1  =  u1t1  +  ½ gt12

=  0  +   ½  x  9.81   x  0.714 2

[  S1  =  02.497  m.]

2)consider  2nd    drop  &  its  motion  .

  time  for  2nd   drop  =  t1  -  0.2 

=  0.714  -  0.2

                                          T2 =   0.514  sec.

    distance  travelled  by  2nd  drop  in  0.514  sec.

 

S2  =   u2t2  + ½  gt22

=  0  +  ½  x  9.81  x  0.514  2

[ S2 =  1.296  m  ]

The  vertical  separation  between  two  drops 

                                     = S1-  S2

=  2.497  -  1.296

                                   =   1.201  m.

Q.6  A  ball  is  projected  vertically  upward  with  a  velocity   of  9.81  m/s    determine  maximum  height  travelled   by   the  ball   ,  velocity   at  which  it  strikes  the  ground  &  total  time  of  journey  .

 

IMG_20191223_121141.jpg

 

A)Consider  the  motion  of  ball  from  A   to  B  :- 

U1  =   9.8  m/s

V1  =  0 m/s  

S1=  h  =  max .  height  travelled  by  ball .

T1=  time  taken  by  ball  for  motion  from 

A  to  B.

Using  equation  of  motion  V 2  =U2  +  2as 

V12  =  U12  -  2gs 

                                                   0  =  9.812  -  2  x  9.81  x  h

  h   =  9.812/  19.62

[ h =  4.905 m ]  ---------  max.    height  reached .

 

Now  using

S1  =  h  =  U1t1  -  ½  g1t12

                                   4.905 = 9.81 t1 – 0.5 x 9.81 x t1

  4.905 t12  -  9.81  t1  +  4.905  =  0

                                                  Solving

[ t1 = 01  sec.]    -----------for  upward  motion  of  ball.

2) consider  downward  motion  of  ball  ,

  U2=  0  ,    V2  =  ?   ,   S  =  h   =  4.905  m

Using  V2   -  U2  =  2as 

V22  -  U22  =  2gs2

V22  -  0  =  2  x  9.81  x  4.905 

                            [V2  =  9.81  m/s  ]   ----------------  with  this  velocity  , ball  will  strike  the  ground .

Now  using

V2  =  U2  +  gt2

9.81  =   0  +  9.81 t2

            [ t2 =  01 sec.]

Total  time  of  journey  =  t1 +  t2  =  2  sec.

 


 

We  know  ,  velocity  of  a  body  is 

       V =  (ds/dt)             OR             V =( dx  /  dt)

&

Acceleration  ,

                             A =  dv / dt          |          a =  dx  /  dt

=  d/dt ( ds/dt)  |            =   d / dt (dx / dt)

A  =  d2s/ dt2        |          a =  d2x/ dt2

=  V. dv/ds       |             =  V.dv/dx

 

A  body  or  particle  sometimes  moves  along   the  straight  line  with  variable  acceleration  .

This  variable  acceleration  may  be  the  function  of  time  or  position   or velocity  .

 

(1)   When  acceleration  is  function  of  time  (t)  [  a=  f(t) ]

a= dv /dt ) =  f (t)

  dv  =  f(t) dt

Integrating  both  sides  ,  we  got 

=  (t)  dt 

 

This  will give   us  equation  for  velocity  as a function  of  time

                      V = f (t)

Velocity,

V  =  ds / dt  =  f  (t)

  ds  =  f  (t)  dt .

 

Integrating  above  equation  we  get  S ( displacement )  in terms  of  ‘t’.

While  solving  the  problems  on  variable  acceleration  ,  following  cases  will arise  :-

(1)Given  equation  of  motion  is  in  terms  of  displacement  (s)  &  time  (t) 

                      S =  f (t)             or        x  =  f (t) 

      Differentiating   both  sides   will  give  ,  (  w.r.t.  time  t)

       V  =  ds / dt  =  f(t)          or    V  =  dx / dt  =  f (t)

 

Again  differentiating    above  equation  ,  w.r.t.   (t)  

  A=  dv /dt  =  d2s / dt2  =  v . dv/ds  = f (t)      OR     a= dv/dt  =  d2x/dt2 =v. dv/dx = f (t)

 

(2) given  equation  is  in  terms  of  acceleration  (a)  &  time  (t) .

 

     A = f (t)

Integrating  once  will  give  us  velocity  .  &

Integrating  again  will give  us  the  displacement .

(3) given equation is in terms  of  acceleration  (a)  &    displacement  (  x  or  s)

A  =  f  (s)      or    a = f(x)

Integrating  once  will  give  us  velocity  equation 

Integrating  twice  will give  the  equation  of  motion  for  displacement 

(4) given equation is in terms  of  velocity  (v)  &  time  (t)

                  V =  f  (t)

Integrate  above  equation  to  get  displacement  .

Differentiate  above  equation  to  get  acceleration  .

(  in  all above  cases  ,  use  given  condition  to  find  the  constants  of  integration  .)

Examples  based  on  variable  acceleration  :-

                                   (equation  in  terms  of  s  &  t  or x  & t – given)

1 )   the  position  of  a  particle  which  moves  along  a straight  line   is  defined  by  the  relation   S= t3  -  6t2  -  15  +  40  ,  where   S  is  in  meters  and  t  in  sec ;

Determine  :-  a) time  at  which  velocity  will  be  zero .

                          b)   position  &  distance  travelled  by  particle  at  that  time  .

                          c)   acceleration  at  that  time  .

                          d)  distance  travelled  by  particle  from  t= 4 sec    to   t= 6sec

            s =  t3 -   6t2 -  15t  +  40 

    Differentiating   w.r.t.   time  ‘t’

                      Ds/dt  = 3t2  -  12t  - 15

  v = ds/dt   =  3t2  -  12 t  -  15

Again  differentiating   w.r.t.   time  ‘t’

              a= dv/dt  =  d2s/ dt2  =  6t -12

a ) time  at  which  velocity  will be  zero 

for ,  V =0

  v =  3t2  -  12t  -  15

  0  =   3t2  - 12t -15

Solving  the  equation 

[ t = 5 sec]

B ) t  = 5 sec.  at this  time   ,

Displacement  will be  ,

  Ss=  t2  -  6t2 – 15t +40

                   Ss =( 5)2 -  ( 6 x  52)  -  (15 x  5 )  + 40

                 Ss  =  -60 m.

  At   t = 0 sec  ;  displacement  will be ,

S0  = t2  -  6t2 – 15t + 40

  S0 = 40 m.

2 )  the  motion  of  particle   is  defined   by   x  =  t3 -  6t2  -  36 t  -  40 . in  meter  .  determine  (1)  when  the  velocity  is  zero  .   (2)  velocity  ,  acceleration  &  total  distance  travelled  when  x = 0 .

given ,

X  =  t3  -  6t2 -  36t  - 40

Differentiating  w.r.t.  t  ,  we  get  ,

  v =  dx /dt  =  3t2 – 12t  - 36

Again  differentiating  w.r.t.  ‘t’

  a= dv/dt =  d2x/ d2t  =  6t – 12

( 1)  when  the  velocity  is  zero  .

For ,  v= 0 ;

V  =  3t2- 12t  - 36

0        =  3t2 -  12t  - 36

Solving   above  equation  ,  we get 

[ t  =  6  sec.]

( 2)  velocity  ,  acceleration  &  total  distance  travelled  at x=0 .

For  x = 0 ,         x  =  t3 - 6t2 – 36t – 40

                              O =  t3- 6t2 – 36t -40

                                 Solving above equation, we get

                                           T = 10sec.

 

  velocity  (for  t  =0)

                              V10 = 3t2 – 12 t – 36

=(3x102)- (12x10)-36

                              V10 = 144m/sec

  acceleration  (for  t = 10)

A  =  6t – 12

=  (6x10)-12

                                             A = 48m/sec2

Distance  travelled   =  |x10 – x6| + |x6 –x0|

  x10 = 103 – ( 6 x 102)- ( 36 x 10 ) – 40

              = 1000 – 600 – 360- 40  

X10  = 0m

     x6 = 63 – (6x62) –(36x6) – 40

X6  =  -256m   

     x0  =  03 – 6 x 02   -36x 0 -40

       X0 =  -40  m

  distance   travelled      = |0 – (-256)| +  |-256 –(-40)|

=  256 +  216

                                                = 472m

 

Distance   travelled  =     |ss- s0|

                                   =    |-60-40|

                                     =100m

(c)      acceleration  at  t =  5 sec 

A  =  6t  -  12

                              = (6 x 5) -12

A  = 18 m/s2 

(d)     distance   travelled   from  4 to 6  sec

    As at  t  =  5sec  ,  v  =  0

Thus,

       Distance   travelled     = distance  travelled from  4  to  5  sec  +    distance  travelled   from  5  to  6  sec.

                                               =   |s5 – s4|+ |s6 – s5|

at   t  = 6,        s6  = 63  -  (6 x 62) – (15 x 6) + 40

                                        =-50m

     At    t   =4,          s4  =   43  - (6 x 42) – (15 x 4 )  + 40

                                         =   -52m

        Distance   travelled   =  | -60 – (-52)|  +  |-50 – (-60)|

=  8+10

                                               =   18m

a  small  part  in  the  mechanism  travels  on  straight  line  such  that  its  position  is  x  =t4 -  10t2  + 24  where   x  is  in  &  t  in  sec  determine  (a)when   velocity  is  zero  (b)   when  acceleration  is  zero  (c)  minimum  speed  reached  by  partical  (d) distance  travelled  in  3  sec.  (e)  expression  of  x  in  terms  of  a.

  

      X=  t4– 10 t2 +  24

differentiating   w.r.t  “t”

 V = dx/dt  =    4t3 – 20t

Again  differentiating    w.r.t  “t”

      A = dv/dt  =   12t2 – 20

(a)  When  velocity  is  zero  (v=0)

  v   =  4t3 – 20t

     0  = 4t3 -  20t

    0   =  t (4t2 - 20)

   t  =  0  and  4t2  -  20  =  0     solving  this  equation   

T  =  2. 23sec

   velocity  is  zero  at 

T  =  0   &  t  =  2.23sec

 

( b)  when  acceleration  is zero  i.e. (a=0)

  a  =  12t2 -  20

  0  =  12t2  - 20

Solving  this  equation 

T  =  1.29  sec

   t =  1.29 sec,  acceleration  is  zero

(c)  minimum   speed   reached  by  particle

   minimum  speed  will  be  reached  when  dv/dt  =0

i.e.   a=0   &  for  a = 0   t  =  1.29  sec  

  thus  minimum  speed  will be  reached  at  t  1.29  sec

 

  |VT = 1.29|  = |4t3 -20t|

                              = |4  x  1.293 – 20 x  1.29|

V1.29  =  1%21 m/sec

(d) distance  travelled  in  3  sec 

D  =  |x3 -  x2.23|  +  |x2.23  - x0|

  x­3= 34 – 10  x 32  +24

    x3   = 15m  ……..position  at  t  = 3  sec

  x2.23  = 2.234 -  10  x  2.232  +24

  x2.23  =  -0.99m …….  Position  at  t  =  2.23sec 

&

X0  =  04  -  10 x  02  +24

    X0   =  24m      ……position   at   t  =  0sec 

  distance  travelled  = | 15 – (-0.99)|  + |(-0.99)-24|

                                         =    15.99  +  24.99

=  40.98m

(e)     relation   x  in  terms  of  a

  we  have  a  = 12t2  -20    t2    =  a =20/12

 Substituting   this  value  in  the  equation   of  x  we get,

  x  =  t4 -  10t2   +  24 

     x  = ( a= 20/ 12  )2    - 10 ( a  +  20 / 12)   + 24 

     x  =  a2  + 40a  + 400/ 144  -   10/12  (a +20 )  +24

  x   =  a2  + 40a +  400/144  -  10( a+20 )/12  +24

  144x   =  144  (a2 +40a + 400)/144  - 14 x  10  (a + 20)/12  +  24  x 144

   144x  =  a2  +  40a  +  400 -  120a  -  2400  +  3456

     144x   =   a2  -  80a  +  1456

 

    Example  on  motion   with  variable  acceleration  (equation  in   terms  of  a  &  t  i.e.  a  = f(t)  is  given)

a  particle  moves  along  straight  line  with  an  acceleration  a  = (4t2  -  2)  where  a  is  in  m/s 2&  t  is  in  se.  when  t  =  0  the  particle  is  at  2m  to  the  left of  origin  &  when  t  =2sec  particle  is  at  20m  to the  left  of  origin  determine   line  position  of  particle  at  t  =  4sec.

Given  a  = 4t2   -  2

        When t  =  0  , x  =  -2m

                      T = 2,   x  -20m

a = dv/dt  = 4t2  - 2

  dv  =  ( 4t2  - 2 )dt

                         =  2 – 2 ) dt

                     V =  4t2/ 3  - 2t + c1

               dx/dt  =  4t3/ 3  -  2t  +  c1

                  dx  =  [  4t3 / 3  -  2t  + c1 ] dt

                    =  4t3 /3  -  2t  +  c1 ) dt

  x  =  t4/3  - t 2 + c1 t  +  c2

Now   ,  at  t =  0  ,   x  =  -2             |    at  t =  2  ,   x  = -20 

                                                                |      -20  =  24/3  - 22 +  c1  x  2  - 2

  -2  =  0 -0 + 0  + c2                        |    -20  =  16/3  - 4  + 2 c1  -2

     [  c2  =  - 2 ]                                   |      [  c1   =  -9.67]

 

Thus  ,   x  =  t4/3  -  t2  -  9.67t  -2 

  at   t= 4  ,              x  =  44/ 3   -  42  -  9.67 x  4  -  2

  x  =   256/3  -  16  -  38.68  -2

[  x  =  28.65  m]

 

 

2 )  The  acceleration  of  a  point  moving  along  a  straight  line  is   given   by  the  equation  a =  12 t  -  20  .   it  is  known  that  its  displacement   s=  -10 m   at  time  t=0  &  s  =  +  10m  at  time  t  =  5  sec  .    derive  equation  of  motion .

   a =  12 t -  20,

given  condition   :        1)   s   =   -10  m     at   t= 0  sec.

                                            2)  s    =  10 m    at    t   =  5  sec

  we  know  that  ,

                                a= dv/dt  =  12t  -  20 

  dv =  (  12 t – 20)  dt

Taking  integration

               =  -  20 )  dt 

  v   =  6t2  -  20 t  +  c1

  ds/dt  =   6t2  -  20t  +  c1

           ds  =  (  6t 2  -  20t  +  c1 )  dt

Integrating  again

       =   2-  20t  +  c1  )  dt

  s  =  2t3  -  10 t2  + c1  t  +  c2

Now  using  given  conditions  ,   1)  s  =  -10   &  t= 0

                                                               2)  s  =  10   &    t  =  5

     -10   =   2  x  103 -  10  x 0 2 +  c1  x  5   -  10

        10  =  250  -  250   +  5c1  -  10

  10 +10   =  5c1

  c1  =   20/5

[  c­1 =  4]

 

Thus  equation   of  motion  is   [  s  =  2t3  -  10t2  + 4t  - 10 ]

Examples  based  on  motion  with  variable  acceleration 

  ( equation  in  terms  of  a  &  x   is  given  i.e.  a  f (x))

1 )   A  particle  oscillates  between   the  points   x=  40 mm  &  x  =  160  mm  with  an  acceleration  a  =  k  (100 – x)    where  k  is  constant  .  the  velocity   of  particle  is  18  mmm/sec  when  x  =  100mm  &  is  zero  at  both   x  =  40  mm  &  160  mm.  determine  1)  value  of  k . 2) the  velocity   when  x =120  mm.

     a  =  k (100 – x)     ------given   relation

Given   conditions  are  :       1)  v  =  18  mm/s     at   x  =  100mm

                                                   2)  v  =   0 mm/sec   at   x  =  40  mm

                                                   3)  v  =  0  mm/s        at   x  =  160 mm

        A=  v.dv/dx  =  k (100 -  x)

v. dv    =  k  (  100 – x ) dx 

  =  (100 – x) dx    -------------- integrating  in  this 

  v2/2  =  k  ( 100x  -  x2/2)  +  c1

Now  using   conditions  1)  &  2)

182/2  =  k  (100  x100  -  1002/2 )  +  c1          |  0 =k (100x40 – 402/2)+c1

162  =  5000 k  + c1                                                  | 0  =  3200k +c1

162  =  5000k  -  3200k                                          |   c1=  -3200k

162  =  1800k

  [k=0.09]        &     c1 = -3200 x 0.09

  [ c1 =  -288]

The equation  of  velocity  becomes  ,

  v2/2  =  0.09  (  100x  -  x2/2 ) -288

v2  =  0.18  (  100x  -  x2/2  )  -  576

Now  for  x =  120 mm  ,

         V2  =   0.18  (  100  x  120  -  120  x120  / 2  )  - 576

[ v  =  +- 16.97  mm/sec

2 )  A  particle  travels  in  a  straight  line  with  accelerated  motion  such  that  a  =  - kx  ,  where  x  is  the  distance  from  starting  point  .  find  constant  k  if  for  x =  2m  ,  velocity  is  4 m/sec .  and  for  x =  3.5 m ,  the  velocity  is  10 m/sec  .  also  find  x  when  the  velocity  is  zero.

given  data  :                                            conditions given :

          A =  -kx.                                             1 )  x = 2m  ,  v =  4 m /sec .

2 )  x =  3.5 m  ,  v  =  10  m/sec .

Find  1) k     &  2)  find  x  for  v= 0

a=  v.dv/dx  =  - k . x

  v.dv  =  - kx  dx .

dv  =  - k 

    V2/2  =  - k x2/2  +  c1

Using  1 st  condition  ,   x  =  2 ,  v  =  4  m/sec .

  42/2  =  -k  x 22/2  +  c1

  8  =  -2k  +  4       --------1)

Using  2nd condition             x =  3.5 ,  v =  10

      102/2   =  -k  x  3.5 2/2  + c1

50  =  - 6.125  k  +  c  1     --------2)

Solving  equation  1)  &  2)   we  get 

[  C1  =  -12.36]   &  [ k = -10.18]

equation  of  velocity  is  v2/2  =  10.18  x2/2  -  12.36

  v2  =  10.18  x2  -  24.72

For  ,  v=0,      0  =  10.18 x2  -  24.72 

  solving  above  equation  for  x.

[ x  =  1.558 m]

Example  an  motion  with  variable  acceleration 

  (  equation  is  given  in  terms  of  v  &  t  I .e.  v  = f(t) )

A  particle  moves  along  a  straight  line  with  velocity  v =  3t2 – 6t  (in m/sec.)  if  it  is    initially at  origin  .  determine  the  average  velocity ,  average  speed  &  distance  travelled  during  interval      0≤ t ≤ 3.5 sec

given  v  =  3t2  - 6t

      If   t  = 0  then  v  =0  &  also  x =0

v  =  3t2  -  6t

v  = dx/dt  = 3t2– 6t

      dx  = (3t2 – 6t) dt

Integrating above  equation ,

∫(3t2 – 6t) dt

             X   =  T3– 3T2 + c1

From  the  condition  t  =0  ,x =0

  0  = 03 – 3x 0  +  c1

  c1= 0

  x= t3  -  3t2

 

(1)    Average  velocity   = change  in position/ time  interval

Vavg=  x3.5  - x0/ 3.5- 0

        x3.5  =  3.53 – 3  x 3.52  = 6.125m

X0  =03  -  3  x  0 =  0m

      Vavg=  6.125  - 0/ 3.5 -0  = 1.75m/sec

 

(2)     Average  speed

To  find   avg.  speed  always  check  where  the  velocity  is   zero  &  then  find  distance  travelled.

 

v =  3t2- 6t

  0 =  3t2 – 6t

Solving  this  equation,

   T=0   &  t = 2 sec

Distance  travelled  =  |X3.5 – X2 |  +  |X2 – X0 |

  X3.5=  6.125m

  X0=  0m

                                       X2=  23  -   3  x  22

=  8 – 12

X2  =  -4m

thus,  distance  travelled  Is,

                         D = |6.125  -(-4)| + |-4 -0|

=  10.125 + 4

                              = 14.125m

  avg. speed  =distance  travelled/3.5  =  14.125/3.5

                           avg. speed  = 4.08m/sec

 

MOTION  DIAGRAM  (MOTION  CURVES):-

it  is  a  graphical  representation  of  displacement  velocity  acceleration  with   time.

(1)  Displacement  - time  curve : (x –t diagram)

(2)  IMG_20191223_121225.jpg

(3)   

 

   This  diagram  represents   position  of particle  w.r.t  to  time  here  time  is  taken  on  x  axis  &  displacement  (s or x) is  taken  on  y  axis 

     Slope  x  t  diagram  at  any  point   represents  the  velocity  at  the  instant

at  any  instant  t (time)

               Velocity   is  given  by    v  =  ds/dt  = dx/dt

 

(2)velocity  time  curve:  [ v  - t  diagram ]

IMG_20191223_121258.jpg

 

this  diagram  represents  velocity  of  particle  w.r.t.  time   here  velocity  is  taken  on   y  axis  &  time  on  x  axis 

             (a)the  slop  of  v – t  diagram  represents   acceleration  at  that  instant 

 

a  = dv/dt

          (b)area  under   the  curve  (v –t  curve)represent  change  in  displacement  (x  or  s)between  two  instant  of  time 

let  us  select  elementary  trip  betweent­1 &  t2.

­ the  area  of  strip  da  =  v  x dt

 

Area  bounded  between  t1  &t2can  be  find  out  by  integrating   area  of  elementary  strip.

da  =  v. dt

  ∫da =  ∫v.dt

         A  =

But  v=dx/dt b   v.dt  = dx

    A = =[

  A  =  area  between  (t1  & t2 )  = x2   -   x1

 

(3)   acceleration -  time  diagram  (a –t curves):

IMG_20191223_121419.jpg

 

This  representation   acceleration  of  particle  w.r.t.  time  ‘t’.  acceleration  is  plotted   on  y axis  &  time   is  plotted  on  x  axis.

The  slope   of  the  curve  representation  jerks  J  = da/dt

  The  area  under  a- t  diagram   between   two  instant  of  time  (t1 & t2) represent  change  in  velocity 

Let  us   consider  an  elementary   strip   

  area  of  strip     da  =  na.dt

           total  area      a =       but   a  = dv/dt  a. dt  = dv

     a =

  area   a= v2  -  v1

The  position  co  ordinate  (x)   is  directly  found  out   from  the  following  moment  equation  (from  a – t diagram)

                         X1 =  x0   +    v0 t  +   mt

Where,

Xt= position  of  particle  at  time  ‘t’

X0  =initial  position   of  particle 

                        V0    =    initial velocity   of  particle 

Mt  =  moment  of  area  under   a  -  t   diagram   about    the  instant  t.

 

Velocity  - displacement  diagram  (v -x)

IMG_20191223_121457.jpg

 

Here  plot   or  graph  of  velocity   (on  y  axis )   &  displacement  on  (x  axis)   is  drawn.

  If  a  normal   is  drawn   to  the   tangent   on  curve  the  subnormal   on  x axis   represents  the   acceleration

Let  pr  is  the  normal   drawn  at  p 

The  subnormal    =  pq.tanθ

                                              =v.tanθ

                                              =   v.dv/dx     

                                            =       a        

  a   =  V

                                          Acceleration    =  velocity   x  slope  of  v-  x  diagram

 

Numerical  on  motion  diagram

    the  acceleration  versus   time  for  a  particle  moving  along  x  axis   is  given  in  the  figure given below.     The  time  interval  is   0  to  40 sec  for  some  time  interval   plot  

(1)  V-t  diagram    (2)    x – t  diagram   (3)  also    find   max  speed    attained   &  max  distance  covered

Diagram

 

IMG_20191223_121555.jpg

 

 

We  know  that,

                    Change   in  velocity   =  area  under   a-t  diagram   from  the  given  a – t diagram

at      T  =  20sec

V20  -    v0   =   1/2 x  20  x  12

     V20-  v0    =  120 m/sec

But    at    T   =0 ,   v0  =  0

       20=  120m/sec

Now, 

  At    t  =40  sec

       v40-  v20= ½  x   20  x  12   =  120

       v40  = 120+v20

     v40  =  240m/sec

   Thus   v  -t  diagram    will  be  as   follows 

 

IMG_20191223_121634.jpg

 

 

Now   from  above   v -  t   diagram  

    Change    in   displacement  =   area  under  v-  t   diagram

      At       t=20sec

X20  -   X 0    =     1/3   x   20x 120  =  800m

     As   (X0 = 0   at     t  = 0  )

X20  = 800m

    At     t =40sec

X40  -  X20   =  (20x 120)   +  (2/3  x20  x120)

              X40   =   2400+1600+  X20

              X40   =  24001600+800

                  X 40=  4800m

         x   -t  diagram    will  be   as  follows 

IMG_20191223_121703.jpg

 

Max  speed  attained   =  240m/sec

Max  distance  travelled   =  4800m

 

The   figure   below   shows  v.t  graph  of  jet  plane   travelling   along  runway   construct         x –t   &  a –t  graph   for  the  motion   of   jet  plane   the   plane   starts  from  rest.

Diagram

 

IMG_20191223_121746.jpg

 

(1)     X- t  diagram;-        change  in  displacement =  area  under  v-t  diagram 

At    t  =0    ,    x=0

At    t=5sec

X5  -X0  =1/2   x  5  x20  =50

    X5   =50   -    X0

           X5 =50m

At      t   =20 sec 

   X20  -  X5   =  15  x  20  =  3000

     X20  =  300 +  X5  =   300  +50   =350m

At   t  = 30  sec

    X30  -X20   =  (10X20)    +     (1/2  x  10  x 40)

                                  =   200   +    200

               X30    =   400  +  350

                 X30   =   750M 

                THIS  X – T  DIAGRAM    IS  BELOW 

IMG_20191223_121830.jpg

 

Now,

From   given   v-  t  diagram  ,

      Slope   of   v  - t  diagram    =  acceleration

At  t=0    slope   a  =  20/5  =  4m/s2

Before     t  =  5  ,        slope   a  =  20/5   =4m/s2

After      t  =5       ,    slope      a    =  0      as   v    constant  

Before     t  = 20   ,    slope     a   =   0

After       t    20      ,    slope    a     40/10  =  4m/s2

At   t  =  30,

                    Slope    a =40/10=  4m/s2

 

a  -t  diagram   is  drawn   below 

IMG_20191223_121906.jpg 

 


 

When a particle moves along a curved path, then motion of the particle is said to be curvilinear.

Basic terminology used to describe curvilinear motion: -

  1. Position vector: - ()

 

  1. Consider that particle is moving along the curve as shown in figure.

 

 

 

b.     Let ‘P’ is the position of particle at any time instant ‘t’.

c.      Let we have fixed reference axes x,y,z as shown.

d.     The line ‘OP’ represents the position of particle &it is known as position vector of particle at time ‘t’.

position vector

e.     = xi + yj + zk         and

  - magnitude of position

2.     Displacement and distance:

 

  • Consider that particle is moving along the plane curve P-P’ as shown in figure.

 

 

  • Let particle is located at point P at time instant ‘t’.

Position of particle at point P is given by vector . Now after time (t + t), let particle is moved to a new position P’. This position of particle is given by the vector ()

  • The vector joining P & P’ is . (dashed line)

= change of position of particle during the time interval ∆t.

= displacement of particle.

  • The distance travelled by the particle along the curve from point P to P’ is s. this is measured along the curved path & is scalar quantity.

3.     Velocity :

In above figure = displacement vector

∆r = displacement of particle (magnitude).

∆t = time taken by particle to move from P to P’.

Avg. velocity = = vavg.

  • When the time interval approaches to zero, t 0.

Instantaneous velocity at P will be,

V =

V =

Speed =

4.     Acceleration: -

Avg. acceleration   a =

For very small interval of time t 0

Thus a = &

The acceleration at point P       =  

(Instantaneous acceleration)

 


 

Co-ordinate systems in curvilinear motion: -

There are 3 different co-ordinate systems that are used to describe the motion of particle along the curved path.

  1. Rectangular co-ordinate system

Also known as Cartesian co-ordinate system

2.     Normal & tangential co-ordinate system.

Also known as path variables or path co-ordinates

3.     Radial & transverse co-ordinate system.

Also known as polar co-ordinate system.

 

1)     Rectangular / Cartesian co-ordinate system

If particle is moving along curved path, we can split its motion into x, y, z directions as an independently performing rectilinear motion.

 

 

  • In the figure (i) above,

Consider the particle moving along the curve & at any instant ‘t’, it is at point P(x, y,z). Thus, position vector for particle at P is

             …………… Position vector

Where x,y,z are the functions of time (t).

 

To find velocity & acceleration of particle, let us differentiate position vector w.r.t.  ‘t’ (time)

=  xi + yj + zk

Taking derivative,

vxi + vyj + vzk     ……………. velocity vector

Where,

vx = , vy = & vz =

vx, vy, vz = x,y,z component of velocity respectively.

Magnitude of velocity  = v =   for space curve

   v =     for plane curve

Direction of velocity = tan α =        for plane curve

Now differentiating velocity w.r.t. time

= axi + ayj + azk                ------acceleration vector

Where

ax =                ----------- x component of acceleration

ay =                ----------- y component of acceleration

az =                 ----------- z component of acceleration

 

magnitude of acceleration

a =            ----- for space curve

a =                       ------for plane curve

direction of acceleration

tan β =                                   -----for plane curve

2)     normal & tangential co-ordinate system: - [path variables]

  • We know that, velocity of particle is always tangential to the path along which it is moving.

 

(consider a particle moving along curve & is located at point P at any instant ‘t’)

So the tangent drawn at that point (at point P) represents the tangential direction. &

The direction which is perpendicular to the velocity vector (or tangent at P) & passing through center of curvature is known as normal direction.

 

 

  • Let us consider the particle moving along a curve contained in the plane as shown in figure above.

Let P is the position of the particle at a given instant. Now, let us attach unit vector at point P. is along tangential direction is along normal direction.

= unit vector along tangential direction

= unit vector along normal direction.

  • Unit vectors can be written as

& =

Differentiating above equation w.r.t. Ø

We get,

--------- (2)

  • Velocity components

As the velocity is always tangential to the path along which partial moves, Then,

Tangential component of velocity is equal to velocity itself and normal component will be zero.

vT  = v

 vN  = 0

the velocity vector of particle is tangent to path.

It will be

  • Acceleration of particle

         --------(3)

But            by double chain rule

                ----------(4)

  • Now let us find the value of

 

 

 

Consider particle moving along curve is at P at time t. Then after small time interval t, particle attains new position at P’. during this it covers ‘ds’ distance along the curve.

Let C = center of radius of curvature.

= radius of curvature of curved path

  • Then arc length = radius × angle subtended by arc

ds = × dØ

Putting above value in equation (4), we get,

Putting this value in equation (3)

 
 

  --------acceleration vector

Where,

&             -----tangential component of acceleration

                       ----------normal component of acceleration

Magnitude of acceleration (total)

Direction of total acceleration is,

tan α =         where α = angle made by acceleration with normal direction

  • aN is always directed toward center of curvature.
  • aT reflects the change in speed of particle.
  • aN reflects the change in direction of motion.
  • When become infinity at inflection point then aN = 0

 

3)     Radial & transverse co-ordinates system [Polar co-ordinates]

 

  • Consider a particle moving along the curve & located at point P at any instant ‘t’.
  • To define the position of the particle, we can say that P is located at a radical distance r from origin & at an angular measurement Ø to the radial line. (fig 2)
  • Thus, the direction along the position vector is called as radial direction (r) and the direction which is perpendicular to the position vector is called as transverser direction (Ø). (fig 1)

 

  • Let particle is moving along a curve & is located at point P at any time instant ‘t’. let r is radial distance &Ø is angle made by radial direction.

 

  • Let us attach unit vector at point P along radial direction & at point P along transverse direction.

 

  • Unit vector defines radial direction & unit vector defines transverse directions.

 

  • Unit vectors can be written as,

= cosØ i + sinØ j        and = - sinØ i + cosØ j

Differentiating above vectors with ‘Ø’.

= - sinØ i + cosØ j                 and              = - cosØ i – sinØ j

        ------(1)                 and               = - (cosØ i + sin Ø j)

                            ------(2)

Now by chain rule,

=                       and            =

Let = time derivative of Ø ; then,

      and       

        and                -----------(3)

Velocity component: -

We know that,

Position vector = magnitude × unit vector along the direction

Differentiating this w.r.t. time,

         by using equation (3)

     where

= (vR) + (vØ)               ………where

Radial component of velocity = vR = =

Transverse component of velocity = vØ= r

Resultant velocity or total velocity,

v =         ---------magnitude

direction of velocity, tan α = where

α = angle made by velocity with radial directions.

Acceleration component: -

We know that,

Acceleration vector,

    =

=

=

=

               ---------acceleration vector

Where,

= radial component of acceleration =

= transverse component of acceleration =

Resultant or total acceleration =        ------magnitude

tan β =                   -----------direction of acceleration

where β = angle made by acceleration with radial direction.

Speed case of curvilinear Motion

(Circular motion)

For the motion in circular path -: (r is constant)

  • Radial component of velocity = vR = 0
  • Transverse components of velocity = v = vØ = r
  • Radial component of acceleration = = -r
  • Transverse component of acceleration = = r

Radius of curvature

  1. When rectangular components of velocity & acceleration are known,

Radius of curvature =

2.     When are known, Then,

  1. Magnitude of
  2. Magnitude of
  3. Radius of curvature =
  1. When path equation y = f(x) is given,

Numerical on rectangular co-ordinates/equation of motion in Cartesian co-ordinates

Que 1. A particle moves along a curved path given by the relation y = starting with initial velocity . If vx = constant, determine of vy& ay at x = 3m. Also determine the magnitude of velocity and acceleration.

so, vx0 = 5m/sec and vy0 = 3m/sec

y = 

Differentiating w.r.t. ‘t’

vy = (8x + 8)

     = (8x + 8)vx

vy = 8x.vx + 8vx

again differentiating w.r.t. ‘t’

vx

= [0 + 8vx + 0]vx

Now at x = 3m,

Vy = 8.x.vx + 8vx

     = (8 × 3 × 5) + (8 × 5)

     = 120 + 40

     = 160 m/sec

(as vx = constant)

(vx0 = vx =  5 m/sec)

= 8.vx2

      = 8 × 52

= 200 m/s2

= 0

Magnitude of velocity

v = 

v =

v = 160.07 m/s

magnitude of acceleration

= 200 m/s2

Que 2. A particle along the path (8t2)i + (t3 + 5)j. where ‘t’ is in seconds. Determine the magnitude of particle velocity and acceleration when t = 4 sec. find the equation of path, y = f(x).

given : (8t2)i + (t3 + 5)j               position vector

x = 8t2&   y = t3 + 5

differentiating w.r.t. t

vx = & vy = = 3t2

again differentiating w.r.t. t

= 16t         &= 6t

Now, at t = 4 sec

Vx = 16t = 16 × 4 = 64 m/sec

Vy = 3t2 = 3 × 42 = 48 m/sec

Magnitude of velocity

v = 

v = 

v = 80 m/sec

= 16 m/s2

= 6t = 6 × 4 = 24 m/s2

Magnitude of acceleration

28.84 m/s2

Now as,

X = 8t2

t2 = x/8

t =

but y = t3 + 5

put the value of t in this equation

y = []3  + 5

y =            ---------path equation

Que 3. The y co-ordinate of the particle is given by y=4t3 – 3t. If ax = 12t m/s2& vx = 8 m/s at t = 0. Calculate the magnitude of velocity & acceleration of particle at time t = 2 seconds.

given : at t = 0, ax = 12t     & vx = 8 m/s

at t = 2, v = ?  a = ?

y=4t3 – 3t            ------given

differentiating w.r.t. time ‘t’

12t2 – 3

Vy = 12t2 – 3        ----------(1)

Differentiating again

24t          ----------(2)

12t           ----------(3) given

  = 12t

dvx= 12t dt

taking integration

Vx = 12 + c1

Vx  = 6t2 + c1

Now using the given condition

t = 0,  vx = 8 m/s

8 = 6 × 0 + c1

c1 = 8

vx = 6t2 + 8                      ---------(4)

at time t = 2 sec

vx = 6t2 + 8

    = 6 × 22 + 8

Vx = 32 m/s

Vy = 12t2 – 3

     = 12 × 22 – 3

Vy = 45 m/s

ax = 12t

    = 12 × 2

ax = 24 m/s2

ay = 24t = 24 × 2 = 48 m/s2

magnitude of velocity at t = 2,

v = 

   = 

V = 55.21 m/s2

Magnitude of acceleration at t=2

53.66 m/s2

Que 4.  A particle is moving along a curve y = x - . If vx = 4 m/s and is constant. Determine the magnitude of velocity & acceleration when x = 30 m.

given vx = 4 m/s   (constant)

 y = x -

given equation of curve is

y = 

differentiating this w.r.t. ‘t’

              -------- by chain rule

Vy =

     = ().vx

= ().vx

Vy = vx ()     -------(1)

Again differentiating w.r.t. ‘t’

         ---------using chain rule

ay =

    = [vx]

ay = [vx]vx

     = . vx

ay =            ------(2)

now at x = 30 m

vx = 4 m/s

vy = vx

vy = 4

vy = 3.6 m/s

now as

vx = constant

ax = 0 &

ay =

ay =

ay = - 0.053 m/s2

0.053 m/s2

As ax = 0 a must be downward because ay is negative.

Numerical on Tangential & Normal Components (Eqn of Motion in path coordinates)

*A car is travelling on a cured portion of Highway of radius 350 m at a speed of 72 kmph. The brakes are suddenly applied, Causing the speed to decrease at a constant rate of 1.25 mph. Determine the magnitude of  total ace of car (a) immediately after the brakes have been applied (b) 4 sec. later.

Given: = 350 m

V 72 = kmph = 20 m/s

T = Tangenhal accn represents change in speed.

:.t = -1025 m/2

At the instant when brakes are applied;

Speed of car = v = 20/s

:. an = V2/ = 202/350 = 10143 m/2

:. Magnitude of Total Acc/n is

A= aT2+aN2 = (1.25)2 + 1.1432 = 1.69

:.a = 1069 m/s2

After t= 4 sec,

     Velocity of car will be decreased due to application of brake.

:. Final velocity after 4 sec = V

Initial velocity before 4 sec = u = 20 m/sec.

:. Using   V = u+aT t = 20+(-1025)*4 = 20-5

     :. V 15 m/sec.

:. awn= v2/ = 152/350 = 0.64m/s2

:. Magnitude of Total Ac(1.252)c/n is,

a= aT2+ aN2 = (1.25)2+ 0.642   =a= 1.4m/s2

*A rocket a path such that its accn is given by a = (4i +tj) m/s2 at x =0 it start from rest. t= (4i +tj) m/s2 at x= 0 it start from rest.t= 20 sec., determine, 1) speed of rocket,2) Radius of curvature of its path ) Magnitude of Tagential & Normal components of acceleration.

a = ai + tj                                                  Radius of curvature ()      

:. a = dv/dt = 4i + tj                                ( [Vx2 +Vy2] 3/2 / Vx. ay-Vy. Ax

      Integrating Both sides,

δ dv =[ (4i + tj)dt    [] = [ 802 + 2002 ] 3/2 / (80*20) – (200* 4)

:. V = [(4 dt )I + [ ( tdt ) j

V = ( 4t)I + ( t2/2) j + c1.                                                 :. | | = 12492.5m.

Now, at t=0, v=0,                                Normal Acc/n,

     :. C1= 0 

Now At t= 20 sec.                           aN = V/= 215.402 / 12492.5

a = 4i + tj            :. aN = 3.71m/s2

a = 4i + 20 j

:. Ax = 4 m/s2            & ay = 20m/s2     Tangential Acc/n

Also, V = (4t) I + (t2/2) j     aT = a2-aN2

 = (4*20) I + (202/2) j                                      :.20.392 – 3.71 2

V = 80 I + 200 j

 :.V 80 m/s      & Vy =  200 m/sec.    aT 20.04 m/s2

:. Magnitude of velocity

V =vx2 + Vy2         =  =802 + 2002   = 215.40m/s

Magnitude of Acceleration.

a  =ax2+ ay2     =  =42 + 202

:. a= 20.39 m/s2

 

Determine the distance travelled & time taken by a car starting from rest, moving on a circular curve having a radius of 275m, and accelerates at constant rate of tangential accln of m\s2& total accln of 1.4 m\s2.

Given :
 

: = 275m

  = 1 m\s2  - constant

  = 1.4 m/s2 

 u = 0 m/sec – car starting from Rest.

Normal component of Acc/n,

   N  = a2  - a2T

 =  1.42- a2

          AN = 0.979 m/s2

But aN = V2/ :. V2 = aN.

:. V2 = 0.979 * 275

:. V = 16.41 M/s

               As AT = constant, Motion is UAM. Using eqn of motion,

   V2 = u2 + 2aT S.

   :. 16.412 = 0+ 2* a* S.

   S = 134. 64 m. – distance travelled. 

 Using V = u+ T t

  :. 16.41 = 0 + 1*t

  :. T = 16.41 sec  -  time taken.

  •  A particle travels a curved path of radius 600 m with a speed of 108 kmph & a tangential acceleration of 4 m/s2 . Determine the total Acceleration of the particle.

      Given = 600 =

      V = 108 kmph = 108 * 5/18 = 30 m/sec.

 T  = 4 m/ sec2.

 

:. We know that

          Normal component of Acc/n is given by

  N =  V2/

  N  = 302/600 = 900/600 = 1.5 m/ s2

magnitude of total acc/n of a particle is,

  = a2 T +aN2 

  = 42 + 1.52

 = 4.27 m/s2

Magnitude of total acc/n of a particle is,

= a2T + aN 2

= 42 +1.52 

= 4.27 m/s2

  • A particle along a curve y = 1+ ws X with constant speed of 4m/s. find Tangential & Normal component of velocity & Acc/n,

       V = 4m/s  - constant

           :. T = 0

Tangential component of velocity = VT  = V = 4m/s

Normal component of velocity = VN = 0.

:. Y = 1+ cosx                      putting all values in above eq/n of ‘

:. Dy/dx = -sin x              || = [ 1+ (-sin x )2] 3/2/-cosx   = (1+ sin2) 3/2/ cosx

:. d2y/  dx2 = -cosx            :. N = V2/ = 42/(1+sin2x)3/2/cosx

||= [1+(dy/dx)2]3/2/d2y/2    :. :. N = 16cosx/(1+ sin2X) 3/2

   Numerical on Radial & Transverse Co- ordinates. (Eqn of motion in poplar Co-   ordinates     

    

  • A particle moves in a circular path of radius 0.4m. Calculate magnitude of Acc/n of the particle if its speed is 0.6 m/sec but it is increasing at a rate of 1.2/sec each second.

Given :  = 0.4 m

                      V = 0.6 m/s

=   T = 1.2 m/s2

In case of circular motion & tangential direction 

Coincides :. =T  = 1.2 m/s2

Also, positive r dirn is in negative Normal dirn.

r  = -aN  ,

 

N = V2/:        = 0.62/0.4

:. r = - N  = -0.9 m/s2

:. Total Acc/n = :. = a2 + a2 = 0.92 + 1.22  = 1.5 m/s2

:. A particle moves an a curved path defined by polar co- ordinates. At certain instant, = 5/4, s2 r = 6mm/s2 &

Given:.   r = 5mm, /4,

6 mm/s2 , ,

:. 16 =( 2r * 0.5 + 5*4)

:. r = -4 mm/s

V = ear+ (r)e+ (5* 0.5) e

:. V = -4 eR + 2.5 e  mm/s & Ve = 2.5 mm/sec

:. V = Vr2+ V a2      =  42+ 2.52 = 4.716 mm/s

 

 

 

A particle position is described by co- ordination r= 2sin 2 meterits & = (4t) rad, where t is in second. Determine the radial & transverse component of its velocity & Acc/n at t = 1 sec.

r = 2 sin2 &  = 4t

Differentiating w.r.t t,

dr/dt = dr/d. d  /dt      & :. d  /dt =    =4

:. r = 2*2 cos2  .

= 4 cos 2  .

 r = 4  . cos 2

             Again differnating w.r.t t

Dr/dt = dt/d  . d  /dt              &  d  /dt =    =0

r = 4  * (-2sin 2).

   = 4( )2 * (-2 sin 2  )

.. r = - 8 (  )2 sin 2

Nt t=1,    = 4t = 4 radings

:. t= 1,     = 4 rad.

:. r=2 sin 2   = 2 * sin ( 2 *4) 1.978 m

:. r = 4   cos 2   = 4*4. Cos (2*4) = - 2.33 m/s2

:. r = 4 rad/s

  = 0

Vr = r = - 2.33 m/s.       :. Vr = -2.33 m/s

V  = r   = 1.978 *4 = 7.192 m/s    :. V   = 7.192 m/s

V   = r   = r (  )2 = - 126.637 – 1.978 *42

r = - 158.28 m/s2

= 2r+ r(- 2.33) *4 + (1.978*)

= - 18.64 m/s2

:.                 = -18.64 m/s2

 

 

*Projectile Motion *

* When a particle is freely thrown in the air along any direction other than vertical             it follows it follows the parabolic path .The motion of a particle along this parabolic         path is called as projectile motion.

*  i.e. when we project the particle in the space, its motion is a combination of horizontal & vertical motion. This motion is called as projectile Motion.

*  Wind Resistance, curvature & rotation of the earth affects the actual path.

But these parameters are neglected.

  • The path Traced by projectile is called as Trajectory.”
  • The motion of projectile in Horizontal direction is uniform motion.
  • Ax = Horizontal component of acceleration = 0
  • The acceleration in vertical direction is affected by gravity. Thus motion in y direction is considered as “Motion under gravity.”
  •  

      :. y = -

  * Basic Terms involved in the projectile Motion *

1) Time of flight :- (t)

- The time by the projectile to move from point of projection to the point of target is called as  “Time of flight.”

- It is the total time during which projectile remains in space.

2) “Horizontal Range” :- (R)

It is Horizontal distance from point of projection the point of target. OR

                It is Horizontal distance bet/n point of projection & point of landing.

      3) Maximum Height :- (H) or (Hmax) .

            It is the vertical distance bet/n the point of projection and the point © where the vertical component of velocity is zero.

     4) Angle of projection :( )

         - It is the angle made by velocity with the Horizontal.

         - If velocity is directed up the horizontal, then it is called as angle of elevation.

-If the velocity is directed down the Horizontal, then it is called as angle of depression.

5) Trajectory:-

                        It is the path traced by a projectile during its motion. It is parabolic in nature.

*projectile on Horizontal plane*

Consider a projectile projected from point A with

          u= initial velocity of projection &

angle of projection.

Let t = total time of flight.

Thus projectile will land at point b after time ‘t’ Both point  A& B are Qn H.P

Diagram

 

 

As the air resistance is neglected, the motion in X-direction is uniform motion & y dirn motion is Motion under Gravity”.

a)     Time of flight (t)

t 2 u sin/

b)    Horizontal Range (R)

R = u2. Sin2/

c)     Maximum Range (R max)

      For maximum Range angle of projection must be 45

       R max = u2/

d)    Maximum Height

H = u2. Sin2/2

 

*Derivation of path Equation*

                                           [ Eqn of Trajectory]

 

Vx= u cos = constant.

                                  Vy = u sin

 

 

Consider a particle projected from A with initial velocity ‘u’ & angle of projection ‘’.

      Let after time ‘t’ , the particle has reached at point p (x,y).

Consider the motion of projectile in X dirn ( VM) :- [ Ap]

            S= velocity * time

 X = u cos. t1

:. t1  = X/ u cos . t1

:. t1 = X/ u cos.      --------- (1)

  Consider the motion of projectile in y dir/n ( m. U.G) [ A p]

:. Sy= uyt1- ½ t2

  Y = u sin .t1 – 1/2 t12

From eq/n (1), put the value of time t1

:. y = u sin .(x/ucos.) – ½ (x/ u-cos.)2

:. y = X. tan - gx2/u2 cos2

:. y X. tan - gX2/2u2 cos2

              Eqn of Trajectory.

 

*projectile on Inclined plane*

 

Let projectile is projected from point A.

 let

angle projection with (inclined) plane.

= Angle of inclined plane with Horizontal.

Now let us select X axis along the inclined plane and y –axis perpendicular to the inclined plane.

:. X component of velocity = u cos

:. Y - ----- -------------------- u sin

Similarly for gravitation Acc/n ‘g’

X component = g sin

y component = g cos

a)     Time of flight (t)                b) Range along the plane (R)

t= 2u. sin /g cos          R= 2 u2 sin/ g cos2 . Cos (+)

c) Maximum Range (Rmax)   d) Max. Height (lar to plane)

Rmax = u2/g (1+sin)                 H = u2 sin2/ 2g. cos

 

 

*Special cases of projectile*

*projectile projected with Horizontal velocity:-*

 

X motion

Consider motion A  B

                           (V.M)

X = u*t

 

 Consider Motion (y- motion)

From AB (M.V.G)

S = ut + ½ gt2

h= 0 + ½gt2

:. t= 2h/g

:. Horizontal distance, = X = u 

Y = x tanx - gx2/u2 cos 2   -eqn of trnjectory

  But  = 0 At point A.

:. –h = -y = 0 - gx2/2u2

      :. h = gx2 / 2u2

 

*for given values of u, two angle gives us the same Range.

1 =

2 = π/2 -

Numerical on projectile Motion. (Projectile on Horizontal plane)

*A projectile is fired with a velocity of 60 m/s on Horizontal plane. Find its time of flight in the following 3 cases.

a) is Range is 4 times the max . Height

b) Its max height is 4 times Horizontal range.

c) Its max. Height & Horizontal range are equal.

  u = 60m/s

a)     When R = 4 H

          u2 sin 2 /g=4 [ 4 2.sin2/2g]

 :. u2/g 2sincos = 242/g sin2

  :. Cos  = sin

  :. Cos - sin  =o

:. = 45

Time of flight t= 2usin /g = 2* 60* sin 45/9081 = 8.65 sec.

b)    When H = 4R

:. u2sin2/2g = 4[ 42 sin 2/g]

:. Sin2 = 8 sin 2

:. sin =(2*8) cos

:. sin = 16 cos

:. tan= 16          & = 86.42

t= 2usin/g = 2*60*sin86.42?9.81 = 12.21 sec

c)     When H = R

u2sin2/2g = u2 sin2g    t= 2usin /g

:. Sin2 /2 = sin2   = 2*60*sin75.96?9.81

:.Sin2 = 2*2 sin cos

:. Sin = 4 cos                                                    t = 11.87 sec.

:. tan =4     :.= 75.96

A projectile is aimed at an object Qn a H.p through the point of projection  and tall 8 M 8 short when the angle of projection is 15, while it  overshoots the the object by 18 m when the angle of projection is  45 Determine the angle of projection to Hit the object exactly.

  let R = actual Range Required to hit the object.

   ax I - =15

   Range = R -8

:. u2* sin(2*15)/g = (R-8)

 :. Multiply both sides by 2

:. 2/g  = 2R-16----------(1)

  Cos (2) =45

Range = R +18

u2 sin2/g = R+18

u2/g. sin 90 = R +18

:. 42/g = R =18------------ (2)

From (1) & (2)      R +18 = 2 R- 16

 :. 2R – R = 18+16 = 34.

:. 2R = 34m ---- Actual Range to hit the object

Actual Range

      R (42/g) sin 2

34 = (R +18) sin2

34 = (34+18) sin2

34 = 52 sin 2

:. Sin 2= 0.653

= 20.38 - Angle of projection to hit the object

 

A shot is fired from the gun .After 2 sec. the velocity of shot is inclined at 30 up the horizontal After 1 more second. It attains max height. Determine the initial velocity and angle of projection.

Let, u = initial velocity = angle of projection. Let, after. 2 second, the shot fired from gun reaches at point D Here Vo makes 30 angle with Horizontal.

&

Let after one more second , shot attains max , Height at point C as shown in figure.

At point D, V0 makes 30 with Horizontal.

:. X component of velocity at ‘D’ = VD cos 30

    But we know that velocity in X dirn is constant (U.m.)

:. VD cos 30 =  u cos

:. 0.87 VD  cos 30 = ucos ------(1)

Consider y-Motion from A to D.       By substituting the value of VD  in eqn (1) & (2)

This is Motion under gravity      0.87 VD  = u cos   

:. V = u +at         : U cos = 0.87*19.62   

:. VD sin 30 = usin- gtAD           : ucos = 0.87* 19.62

:. 0.5 VD = usin- 9.81*2        : ucos=17.069 m/s – (3)  

:.0.5 VD = usin- 19.62 – (2)

Now

Consider y motion from D-c ,(M.V.G)            Also, usin= 0.5VD + 19.62

V = u +at      = 0.5*19.62+ 19.62

0 = VD sin30 – g*tDC     =u sin= 29.43 m/s & -------- (4)

0= 0.5 VD – 9.81 *1                                from eqn (3) & (4)

:. 0.5 VD  = 9.81      usin/ucos = 29.43/17.069

:. VD  = 19.62  m/s      : tan = 1.724

:. = 59.886& u =   29.43/sin54.886 =34.02 m/s

 

A projectile is fired from the edge of 150 m cliff an initial velocity of 180 m/s at 30 angle with Horizontal. Find 1) The Horizontal distance from the gun to the point where the projectile strikes the ground 2) The greatest elevation above the ground reached by projectile 3) striking velocity. Refer the given figure.

 

 

Let

X= Horizontal distance between A& B

A= point of projection

B= point of striking.

We can see from the fig that A& B are not on same level. TAB = time Req = tAB

Consider the Horizontal motion from A to B (U.M)

             :. Distance = velocity * time

  X = 180 cos 30 * tAB

 X= 155.88 tAB ------ (1)

Consider vertical motion from A to C,       H+ 150+ ½*9.81* t2CB

: V = u + at           412.84+ 150 = 4.905 +tCB

Vcy = 180sin30- g*tAC    : t2CB = 562.84/4.905 

:0 = 90 – 9.81 tAC     :. t2CB = 114.748

:tAC = 90/9.81     :. tCB = 10.71 sec

:tAC = 9.17 sec.     tAB = 9.17 + 10.71 = 19.88 sec
Consider vertical motion from A to E                 from eqn (1)

H = u2sinsin2 /2g = 1802*sin2 30/2*9.81         X = 155.88 tAB = 155.88*19.88

                                                                                                                                          X = 3098.9 m

H = 412.84 m.

:. Now using. Eqn of motion

S = ut + ½ gt2  

 

Horizontal distance from the to the point of striking is

              X = 3098.9 m

Time req. from A to B = tAB = 19.88 sec.

Greatest Height Reached by projectile above the ground is

    Hmax H + 150 = 412.84+150

        Hmax = 562.84 m

Now,

Consider that VB = striking velocity. &

                         Ø = angle made by striking velocity with Horizontal. As shown.

Let VBX = X component of VB.

VBy = y component of VB.

But we know that,in X dirn, motion is uniform.

Thus VBX = u cos = 180 cos 30 = 155.88 m/sec.

 To find VBy consider the motion from C to B.

   :. V = u + gt

     VBy = Vcy + g * tCB

VBy  = 0 + 9.81 * 10.71

      VBy = 105.06 m/sec

:. VB = VBX2 +V2BY = 155.882 + 105.062

  VB = 187.9 m/sec

     Tanø = VBy/ VBX = 105.06/155.88

     :.  Ø = 33.97

 

 

 

 

Reference Books:

 

1. Engineering Mechanics by S. P. Timoshenko and D. H. Young, McGraw- Hill publication

 

2. Engineering Mechanics by J. L. Meriam and Craige, John Willey

 

3. Engineering Mechanics by F L Singer, Harper and Rowe publication

 

4. Engineering Mechanics by A. P. Boresi and R. J. Schmidt, Brooks/Cole Publication

 

 


Index
Notes
Highlighted
Underlined
:
Browse by Topics
:
Notes
Highlighted
Underlined