Unit-3
Integral Calculus
Reduction formulae:
|
REDUCTION FORMULAE PROBLEMS, GAMMA FUNCTION
Additional results : | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I. |
|
For all integral values of n. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
II. |
|
If n is an even integer.
If n is an odd integer. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
III. |
|
If n is an even integer.
If n is an odd integer. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
IV. |
|
If n is an even integer.
If n is an odd integer. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
V. |
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
VI. |
|
If n is even, m is even or odd
If n is odd, m is even or odd
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
VII. |
|
If m and n both are even
Otherwise | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ex1) dx
Ex2) dx
Ex3) dx Sol) Put x = 3 sin2 dx = 6 sin cos d = 0 to /2 I = 6 sin cos d I = 6 sin cos d = 18 sin4 a d = 189 I = Ex4) Find the reduction formula for sinn x dx and hence evaluate sin6 x dx Sol)
GAMMA FUNCTION AND ITS PROPERTIES.
|
Ex1) Evaluate 0∞ x3/2 e -x dx
Sol) 0
∞ x3/2 e -x dx = 0∞ x 5/2-1 e -x dx |
= γ(5/2) |
= γ(3/2+ 1) |
= 3/2 γ(3/2 ) |
= 3/2 . ½ γ(½ ) |
= 3/2 . ½ .π |
= ¾ π |
Ex2) Find γ(-½)
Sol) (-½) + 1 = ½
γ(-1/2) = γ(-½ + 1) / (-½)
= - 2 γ(1/2 )
= - 2 π
Ex3) Show that
Sol)
= |
= |
= ) ....................... |
= |
= |
Ex4) Evaluate dx.
Sol)
Let dx | ||||||
Put or ;dx =2t dt . | ||||||
dt | ||||||
dt | ||||||
Ex5) Evaluate dx.
Sol)
Let dx. | ||||||
Put or ; 4x dx = dt | ||||||
dx | ||||||
Definition : Beta function
|
Properties of Beta function :
|
2. |
3. |
4. |
Ex1) Evaluate I =
Sol)
|
= 2 π/3 |
Ex2) Evaluate: I = 02 x2 / (2 – x ) . dx
Sol)
Letting x = 2y, we get |
I = (8/2) 01 y 2 (1 – y ) -1/2dy |
= (8/2) . B(3 , 1/2 ) |
= 642 /15 |
BETA FUNCTION MORE PROBLEMS
Relation between Beta and Gamma functions :
|
RULE I: If where is parameter and are constants then = | ||||||||||||||||||||||||||||||||||||||||||||
Q1) Evaluate: (i) .
Sol)
|
DIFFERENTIATION UNDER INTEGRAL SIGN RULE – II(Leibnitz’s Rule)
RULE II: Ifwhere are function of parameter then = | |||||||||||||||||||||||||||||||||||
Q)Prove that: (i) If , then show that.
Sol)
|
ERROR FUNCTION
Introduction to error function and its properties.
Error Function:
2. Complementary Error function is denoted by and defined as 3. Properties of Error function (i) (ii) (iii) (iv) i.e. error function is odd function. (v)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Q) Prove that (i) is an odd function and hence deduce . Sol)
|
References:
- Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.)
2. Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education)
3. Advanced Engineering Mathematics by Peter V. O’Neil (Thomson Learning)
4. Thomas’ Calculus by George B. Thomas, (Addison-Wesley, Pearson)
5. Applied Mathematics (Vol. I and II) by P.N. Wartikar and J.N.Wartikar Vidyarthi GrihaPrakashan, Pune.
6. Differential Equations by S. L. Ross (John Wiley and Sons)