Back to Study material
M2

Unit-3

Integral Calculus


Reduction formulae:

Where

Ex1) cos3 x dx

Sol)

Here    n = 3, odd

 cos3 x dx  = 1

 

Ex2) cos8x dx

Sol)

Here  n = 8 = even

 cos8 x dx  =  

Ex3) Evaluate  cos3cos4 d

Sol)

By using reduction formula

  sin3cos4 d =  1

   = 

Ex4) Evaluate   sin6cos8 d

Sol)

   =   

 ( m and n both are even)

   = 

Ex5) Evaluate   sin6cos5 d

Sol)

   =  1

   = 

Ex6) Evaluate   sin4 cos8 d

Sol)

   = 

   = 

 

 

Ex7)  (sin x )4 (cos x)2 dx  

Sol)

We have, 

  f(x) dx =  f(x) dx   + f( – x) dx

     I = sin4  (x) (cos x)2  dx +  [sin – (– x)]4 [cos (– x)]2 dx 

  =  sin4 x cos2 x dx + sin4 x cos2 x dx

  =   + 

  = 2 

     I = 

 

 

 

REDUCTION FORMULAE PROBLEMS, GAMMA FUNCTION

 

Additional results :

I.

 

 

 

For all integral values of n.

II.

 

 

If n is an even integer.

 

 

If n is an odd integer.

III.

 

 

 

If n is an even integer.

 

 

If n is an odd integer.

IV.

 

 

 

If n is an even integer.

 

 

If n is an odd integer.

V.

 

 

 

 

VI.

 

 

If n is even, m is even or odd

 

 

 

If n is odd, m is even or odd

 

VII.

 

 

If m and n both are even

 

 

Otherwise

Ex1)  dx

Sol)

 Put   x = sin         dx  =  cos d

 When  x = 0,      =  0

  x = 1,      =  /2

      I = cos d

   =  sin7 d

   =  1 

   = 

 

Ex2)  dx

Sol)

 Put   x = sin        dx  =  cos d

   = 0     to  /2

  I = cos d

   = 4  sin2 d sin4 4 d

   = 4   

   =  

Ex3)  dx

Sol)

 Put   x = 3 sin2            dx  =  6 sin cos d

   = 0     to  /2

  I =   6 sin  cos d

  I =  6 sin cos d

   = 18  sin4 a d

   = 189

  I = 

Ex4) Find the reduction formula for  sinn x dx and hence evaluate  sin6 x dx

Sol)

 

Let I­n=   sinn x dx

   =   sinn – 1 x sin x dx

Integrating by parts,

   = sinn – 1 x sin x dx –

   = [sinn– 1 x (– cos x)] [(n – 1) sinn – 2 x (cos x)] (– cos x) dx

   =  + (n – 1)   sinn – 2 x cos2 x dx

   =  + (n – 1)  sinn – 2 x (1 – sin2 x) dx

   =  + (n – 1)

  In =  + (n – 1) [In – 2 – In]

  In + (n – 1) In =  + (n – 1) In – 2

  n In =  + (n – 1) In – 2

 

  In =   +  In – 2    …(1)

 Now,  sin6 x dx = I6

  Put n  =  6  in equation (1)

  I6 =  +   I4

  I6 =  +   I4    …(2)

Put n = 4 in equation (1)

  I4 =  +   I2

  I4 =  +   I2    …(3)

Put n = 2 in equation (1)

  I2 =  +   I0

  I2 =  +   I0    …(4)

 But I0 =  sin0 x dx =  1 dx =

   Equation (4)   I2 = 

  I2 = 

 Equation (3)    I4 = 

   = 

  I4 = 

 Equation (2)     I6 = 

   = 

   = 

  I6 = 

   sin6 x dx  = 

 

GAMMA FUNCTION AND ITS PROPERTIES.

Definition : Gamma function

 

 n  =

 

Properties :

  1. n    =    2

 

 2.     1  = 1

 

                                               3.                         

  

                                           4.                  

 

 


 

Ex1) Evaluate   0  x3/2  e -x dx

Sol)             0

  x3/2  e -x dx          =   0  x 5/2-1  e -x dx  

   =  γ(5/2)

             =   γ(3/2+ 1) 

             =    3/2   γ(3/2 )  

            =   3/2 .  ½   γ(½ ) 

    =  3/2 . ½ .π 

            =    ¾ π  

 

Ex2) Find  γ(-½) 

Sol)      (-½) + 1  =  ½
γ(-1/2)  =   γ(-½ + 1)  / (-½)   

 =   - 2   γ(1/2 )  

=  - 2 π  

 

Ex3)  Show that      

Sol)

=

                                          =

                                          = )  .......................

                                          =

                                          =

Ex4) Evaluate  dx.

Sol) 

Let    dx 

X

0

t

0

                                                    Put or ;dx =2t dt .

dt

dt

 

Ex5) Evaluate   dx.

Sol)

 

Let   dx.

x

0

t

0

                                        Put or  ;             4x dx = dt

dx

 

Definition : Beta function

 

 

 

Properties of Beta function :

 

2.    

3.    

4.    

 

Ex1)  Evaluate    I   =  

Sol)

 

                          = 2 π/3

 

Ex2) Evaluate:  I =  02  x2   / (2 – x )   . dx

Sol)

Letting   x  = 2y, we get

I   =   (8/2) 01  y 2  (1 – y ) -1/2dy

=  (8/2) . B(3 , 1/2 )

= 642 /15

 

BETA FUNCTION MORE PROBLEMS

Relation between Beta and Gamma functions :

 

Ex1)  Evaluate:  I =  0a  x4  (a2 – x2 )   . dx

Sol)                 

 Letting   x2  = a2 y , we get

                                                       I   =   (a6  / 2) 01  y 3/2  (1 – y )1/2dy

=  (a6  / 2) .  B(5/2 , 3/2 )

=  a6  /3 2

Ex2)   Evaluate:  I =  02 x (8 – x3 )   . dx

Sol)             

 Let   x3  = 8y

I =  (8/3) 01  y-1/3      (1 – y ) 1/3   . dy

 

= (8/3) B(2/3 , 4/3 )

=  16 π / ( 9 3 )


RULE I: If where is parameter and are constants then

=

Q1) Evaluate:

(i)                .

 

Sol)

 

Let 

  - - - - - - - - - - - - - - - -  (1)

Differentiating by DUIS rule

 

 

 

 

 

 

 

      

Separating vectors and integrating, we have

 

 

 

 

    - - - - - - - - - - - - - - - -  (2)

Putting in equation (1) and (2), we get

and

 

 

 

(ii) 

Solution:

 Let 

   - - - - - - - - - - - - - - - -  (1)

Differentiating by DUIS rule

 

 

Put

 

 

Integrating, we get  

  

     

  

     - - - - - - - - - - - - - - - -  (2)

Putting in equation (1) and (2), we get

    

 

 

 

DIFFERENTIATION UNDER INTEGRAL SIGN RULE – II(Leibnitz’s Rule)

RULE II: Ifwhere are function of parameter then

=

Q)Prove that:

(i)                If , then show that.

 

Sol)  

We have given that

   - - - - - - - - - - - - - - - -  (1)

Then we have to prove that.

Differentiating by DUIS rule (Leibnitz’s Rule), we have

 

 

 

 

Again differentiating by DUIS rule (Leibnitz’s Rule), we have

 

 

 

        

 

This is the desired result.

(ii)If, then prove that.

Solution:

We have given that

   - - - - - - - - - - - - - - - -  (1)

Then we have to prove that.

Differentiating by DUIS rule (Leibnitz’s Rule), we have

 

 

 

 

Again differentiating by DUIS rule (Leibnitz’s Rule), we have

  

  

  

Again differentiating by DUIS rule (Leibnitz’s Rule), we have

  

  

  

 

ERROR FUNCTION

Introduction to error function and its properties.

Error Function:

  1. Error function is denoted by and defined as

2.     Complementary Error function is denoted by and defined as

3.     Properties of Error function

(i)               

(ii)            

(iii)         

(iv)           i.e. error function is odd function.

(v)             

 

Q) Prove that

(i)                is an odd function and hence deduce .

Sol)

We have to prove thatis an odd function i.e.

 

We know that

   - - - - - - - - - - - - - - - -  (1)

Replace by, we have

Put , then and

 

  

  

 

Hence the error function is odd function.

Now we have to prove that

 

Consider

    

    

 

 

 

This is the desired result.

 

(ii)              

.

 

Solution:

We have to prove that

Consider

    

    

 

 

 

This is the desired result.

 

 

(iii) 

Solution:

We have to prove that

Consider

    

    

 

Put , then and

 

  

     

  

 

This is the desired result.

 

(iv)  

Solution:

We have to prove that

We know that

 

 

                         

 

   

 

    

 

 

References:

  1. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.)

 

2.     Advanced Engineering Mathematics by M. D. Greenberg (Pearson Education)

 

3.     Advanced Engineering Mathematics by Peter V. O’Neil (Thomson Learning)

 

4.     Thomas’ Calculus by George B. Thomas, (Addison-Wesley, Pearson)

 

5.     Applied Mathematics (Vol. I and II) by P.N. Wartikar and J.N.Wartikar Vidyarthi GrihaPrakashan, Pune.

 

6.     Differential Equations by S. L. Ross (John Wiley and Sons)

 

 

 

 


Index
Notes
Highlighted
Underlined
:
Browse by Topics
:
Notes
Highlighted
Underlined