Back to Study material
SDD3


UNIT 4


Earth Retaining Structures


 

In order to retain earth in filling having a greater height, retaining walls are constructed. The retaining walls are usually preferred in following construction:

 

(1) Rail and road projects where earth filling is required.

(2) If basements are provided in buildings.

(3) Wing walls and abutments act as retaining walls.

 

There are following types of retaining walls:

(1) Cantilever or T-shaped retaining wall

(2) Counterfort retaining wall

(3) Buttress retaining walls

 


 

The cantilever walls may prove to be uneconomical if the retaining wall’s height is more than a certain limit. In order to achieve economy, counterfort retaining walls are provided.

These retaining walls are vertical beams which are connected to the stem as well as heel slab by reinforcement.

The design of heel slab and vertical stem may be treated as a continuous slab and not as a cantilever slab.

If the toe side is provided with the counterforts, the retaining wall is known as buttress wall.

Cantilever, counterfort and buttress retaining walls are shown in Figs. 3.1 and 3.2.

 

1.tif2.tif 

 

(a) Cantilever retaining wall without toe projection

(b) Cantilever retaining wall with fillets


                                                            Fig. 4.1

 

(a) Counterfort Retaining Wall :

 

\\yogesh\F\Tiff\Design of concrete structure_II_UPTU\3.2.2.tif


 

 

Fig. 4.2

 


 

If a wall retains the earth level upto the top of retaining wall, it is known as retaining wall without surcharge.

If the earth on the retained side is not level or the earth carries load, the earth is said to have surcharge.

In this case, the pressure exerted by earth on wall is more.

 

3.tif

4.tif5.tif 

 

 

 

 

Positive surcharge of sloping earth  

Positive surcharge per

 Unit run  

Negative surcharge of sloping earth

Fig.  4.3

 


 

7.tif
6.tif

 

Fig. 4.4               Fig. 4.5

 

  • Active earth pressure is defined as horizontal pressure exerted by retained earth on retaining wall.
  • Passive earth pressure is defined as the resisting pressure applied by wall on the retained earth.
  • The variation of this earth pressure is linear along the depth of retained earth.
  • The total earth pressure upto the depth H (Fig. 3.4) is the area of pressure diagram which is 1/2 KaWH2 and acts at a height of H/3 from bottom. Hence, moment due to horizontal  pressure = KawH3              ...(1)

Where Ka =  and is the angle of repose of soil.

  • 8.tifIn case of a sloping surcharge at an angle

to the horizontal pressure at a depth of

H1 due to earth= Ka WH1 and total earth

Pressure upto a depth of H1 = KaW

Which acts at a height of H1/3 and parallel

To the ground surface.

Moment about the base= KaWcos …(2)

Where, Ka = cos                     Fig. 4.6

 

  • If the earth has a level surcharge of ws/unit run, then pressure at all depths is some of magnitude KaWs and the surcharge pressure at depth H is KaWs H acting at H/2 from bottom (Fig. 3.6)

Moment due to this at bottom =KaWH2 …(3)

 


 

  • The components of cantilever retaining wall are shown in Fig. 4.7.
  • 9.tifStem is designed as a cantilever retaining earth.
  • The toe and heel slabs are also designed as

Cantilevers resisting upward soil pressure and

Downward earth pressure.

  • The retaining wall is provided with or without

Shear key at the bottom of the base slab to protect

The wall against sliding.

 

4.5.1 The general guidelines to decide the preliminary dimensions of the retaining wall:

 

10.tifFollowing guidelines should be adopted while deciding the dimensions of a cantilever retaining wall:

 

(1) Top width of stem, b2= 200 mm

(2) Bottom width – Design for the maximum bending moment.

(3) Height of retaining wall = H

(4) Width of base slab = b

(5) b is usually kept between 0.5H to 0.6 H for walls

Without surcharge and 0.7H for walls with surcharge.

(6) Toe projection = b/3       

Fig. 4.8

 

(7) The thickness of base slab is normally kept as same as the bottom width of   

Stem i.e. b1 =H1

(8) The wall is to be checked for horizontal sliding. The factor of safety against  

Sliding is > 1.5,

Where W is total vertical load, is coefficient of friction and p is horizontal

Earth pressure.

(9) If necessary, a key is provided.

The ratio of overturning moment to the restoring moment should be less                                               than 0.87 or the ratio of restoring moment to the overturning moment should be more than 1.15.

 

Problems based on Design of Cantilever Retaining Walls

 

Example 4.5.2 : Design a cantilever retaining wall to retain earth for a height of 4m above ground level. The earth density is 18kN/m3 and its angle of repose is 30. The embankment is horizontal at its top. The SBC of soil is 200 kN/m3 and coefficient of friction between soil and concrete is 0.5. Take M20 grade concrete and Fe415 steel.

 

Ans:

 

H2  =  3.5m;=18 kN/m3 ;=30 ;SBC qo=200 kN/m2

 = 0.5 ; fck=20N/mm2 ; fy=415 N/mm2

 

Step 1 : Coefficient of active earth pressure:

 

Ka =  = =

Minimum depth of foundation is

ymin =  = = 1.23 m

 

Provide depth of foundation =1.25 m

Height of retaining wall =4 + 1.25 = 5.25 m

 

Step 2 : Preliminary dimensions of retaining wall

 

b =0.5 H to 0.6 H = 0.5 5.25 to 0.6 5.25 = 2.625 m to 3.15 m

Say b =3m 

Toe projection =b/3 = 3/3 = 1 m

Thickness of base slab = Thickness of stem =  =  = 0.4375 m say 0.45 m

Assume the top width of stem as 0.2 m. Fig. 3.9 shows dimensions of retaining wall. Various forces on retaining wall are shown in Fig. 1-Q. 3.7.

11.tif
12.tif

(a)                                                                                                                                                      (b)
 

 

Fig. 4.9

 

Step 3: Check for Stability :

 

 

Weight in kN

x(m)

M (kN-m)

Weight of backfill

 W1 =  1.55 4.80 18

  =  133.92

3 – = 2.225

297.972

Rectangular portion of stem

 W2 =  0.2 4.80 18

  =  17.28

1 + 0.45 – 0.225 = 1.225

21.168

Triangular portion

 W3 =  0.25 4.80 18

  = 10.8

1 + 0.45 = 1.3

14.04

Base slab

 W4 = 0.45 3 18  = 24.3

= 1.5 m

36.45

 

 

W  = 186.3

 

M = 369.63

 

Horizontal pressure pH =  Ka H2 =  18 5.252= 81.86kN

Overturning moment M0 = PH= 81.86   = 143.26 kN-m

Factor of safety for overturning F1 = = 2.24 > 1.15.

Hence OK

F2 = = = 0.9 < 1.5

Hence, shear key is to be provided.

 

Step 4: Pressure under base slab

 

Total moment about point O = M – M0  = 369.63 – 143.26 = 226.37 kN-m

Total vertical load =186.3kN

Horizontal distance from O where resultant intersects the base line,

= = 1.215 m 

Eccentricity, e  = – 1.215 = 0.285 m

Maximum pressure p1 = = = 97.497 kN/m2

Minimum pressure p2 = = 26.703 kN/m2

Thus p1< SBC of soil, hence ok.

 

Step 5 : Design of stem :

 

Stem acts as a cantilever of height 4.80 m subjected to a uniformly varying load of Kah

Maximum moment at the base of cantilever

= Kah2 =  Kah3 =  18 4.803 = 110.592 kNm

Mu = 1.5 110.592 = 165.888 kN-m

For M20 and Fe415, Mu(lim) = 0.138 bd2 fck

165.888 106 = 0.138 1000 d2 20

d2 = 60.104 103 

d = 245.16 mm

Depth  d = 350 mm  and overall depth D = 400 mm

 

Main steel :

Mu = 0.87 fy Ast d

165.888 106 = 0.87 415 Ast 350 

1312.74 = Ast

Ast2– 16867.5Ast + 1312.74 16867.5 = 0 

Ast = 1434.78 mm2

Use 12mm bars

s = 1000 = 86.15mm

Provide 12 mm bars @ 80 mm c/c

 

Distribution steel :

Average thickness of wall =  = 325 mm

Ast = 1000 325 = 390 mm2

Providing 195 mm2 on each face and using 8 mm bars.

S = 1000 = 257.7 mm

Provide 8 mm bars @ 250 mm c/c on tension face.

A mesh of 8 mm bars @ 250 mm is given on compression face of the wall.

 

Step 6 :Curtailment of vertical bars  : 

 

One third of vertical bars are curtailed at a height of 1.6 m from base and another 1/3 at a height of 3.2 m from base.

Check for shear : V = pH = 87.86 kN

Vu = 1.5 81.86 = 122.79 kN 

v =  = 0.273 N/mm2

P =  = 0.20  

­e = 0.4 N/mm2

No shear R/F is required.

 

Step 7 :Design of Toe slab

Pressure at face of toe = 26.703 + (97.497 – 26.703)=73.90 kN/m2

M = 73.90 + 1 (97.497 – 26.703)  1=84.17 kN.m

Mu= 1.5 84.17 = 126.25 kN.m

d = 350 mm

126.25 106 = 0.87 415 Ast 350 

13.tif 999.10 = Ast

A– 16867.5 Ast + 16867.5 999.10=0

Ast = 1066.54 mm2

Using 12 mm bars

s = 1000 = 106.04 mm                       Fig. 4.10

Providing 12 mm bars @ 300 mm c/c in both directions.

 

Step 8: Design of Heel slab

 

Width of heel slab = 1.55 m

Pressure at the face of column = 26.703 +   (97.497 – 26.703)=63.28 kN/m2

Weight of back fill = γH1 = 18 4.80 = 86.4 kN/m

Self weight = 0.45 1 25 = 11.25 kN/m

Total load = 86.4 + 11.25= 97.65 kN/m

Mmax = 97.65 – 26.703 – (63.28 – 26.703) 1.55 1.55

= 70.725 kN-m

Mu = 1.5 70.725 = 106.08 kN-m

 

Main steel :

106.08 106 = 0.87 415 Ast 350

839.52 = Ast

A– 16867.5 Ast + 839.52 16867.5 = 0 

Ast = 886.05 mm2

Use 12mm bars, 

s =  = 127.6 mm

provide 12 mm bars @ 120 mm c/c in both directions.

 

Step 9 :Design of shear key

 

Pressure at face of shear key = 73.90 kN/m2

Coefficient of passive earth pressure

Kp = = 3

If ‘a’ is the projection of shear key, resistance offered by passive earth pressure.

= Kp vertical pressure = 3 73.9 a = 221.7a kN

  Factor of safety against sliding F2  =  = 1.5

= 1.4 83.835 + 221.7a = 114.604 a = 0.138 m

  Provide 200 mm deep shear key.

 

14.tif

 

Fig. 4.11

 

Example 4.5.3: Design the stem of a RC cantilever retaining wall, retaining leveled earth 5 m above the base level. Take the density of earth as 18 kN/m3 and angle of repose as 30. Toe projection 1.8 m, heel projection 1.7m, thickness of base slab as 450 mm.

16.tifAns.:

 

= 18 kN/m3

Ka =  = =  

Stem acts as a cantilever of height 5 m subjected

To a uniformly varying load of Kah.

Maximum moment at the base of cantilever

=  Kah2 =  Kah3 =  18 53

= 125 kN-m

 

Assume M20 concrete grade and Fe245 steel.                          Fig. 4.12

Mu = 0.87 fy Ast d

125 106 = 0.87 415 Ast 450

769.36 = Ast

A– 21686.7 Ast + 769.36 21686.7 =0 

Ast = 798.78 mm2

Using 12 mm bars s =  = 141.58 mm

Provide 12 mm @ 140 mmc/c

 

Distribution steel :

Average thickness of well =  = 325 mm

Ast =  1000 325 = 390 mm2

Providing 195 mm2 on each face and using 8mm bars.

s =  = 257.77 mm

Provide 8 mm bars @ 250 mm c/c on tension face.

 

A mesh of 8 mm bars @ 250 mm is given on compression face of the wall.

 

Curtailment of vertical bars :

 

One third of vertical bars may be curtailed at a height of 1.67 m from base and another one third at a height of 3.33 m from base as shown in Fig.3.13.

 

Check for shear:

V = PH = KaH2 =  18 52 = 75 kN 

Vu = 1.5 75  = 112.5 kN,  V =  = 0.25 N/mm2

P =  = 0.25  

c =0.4N/mm2 No shear R/F is required.

 

17.tif

 

Fig. 4.13

 

Example 4.5.4: Determine the dimensions of a T-shaped retaining wall for a height of 5 m above the ground level. The top of the earth is surcharged at 20  with horizontal. The angle of repose of earth is 30 and its density is 20kN/m3. The safe bearing capacity of soil is 50 kN/m2 and coefficient of friction between concrete and soil is 0.55.             

Ans.:

H2 = 5m;        =20 kN/m3;       =30 ;     SBC q0=90 kN/m2

  = 0.55;        fck=20 N/mm2 ;          fy=415 N/mm2

Ka =  = =  

 

Minimum depth of foundation

= =  = 1.5 m

18.tif

Provide a minimum depth of 1.5 m below ground level.

 

Total height of retaining wall  = 5 + 1.5 = 6.5 m

Use 500 mm thick base slab

Height of stem = 6.5 – 0.5 = 6 m

Let the top width of stem = 200 mm

Width of base slab= 0.7H = 0.7 6.5 = 4.55 m 4.6 m

Width of toe = 4.6/3 = 1.53 m      

Fig. 4.14

 

Example 4.5.5: Design the vertical stem of a T-shaped retaining wall for a height of 3.5 m above the ground level. The top of earth retained is horizontal. The angle of repose of earth is 30 and its density is 20 kN/m3. The safe bearing capacity is 100 kN/m2. Use M25 grade concrete and Fe415 grade steel.             

Ans.:

 

H2 = 3.5 m ;       =20 kN/m3 ;     =30;        q0=100 kN/m2 ; 

= 0.5 (assume);  fck=25 N/mm2;  fy=415 N/mm2

Coefficient of active earth pressure Ka =  = =

Minimum depth of foundation = = = 0.55 m

Provide depth of foundation = 1m

Height of retaining wall = 3.5 + 1 = 4m

 

Preliminary dimensions of Retaining wall :

 

b = 0.5H to 0.6H = 0.5 4 to 0.6 4 = 2 m to 2.4 m  

Provide b = 2.4m Toe projection = = = 0.8 m

Thickness of base slab=thickness of stem =  =  = 0.33 m

Say 0.4 m

Let top of width of stem = 0.2 m

 

19.tif

 

Fig. 4.15

 

Stability check:

 

 

Weight in kN

x(m)

Ms (kN-m)

Weight of backfill

W1 = 1.2 3.6 20 = 86.4

2.4 – = 1.8

155.52

 

Rectangular portion of stem

W2 = 0.2 3.6 25 = 18

0.8 + 0.4 – 0.1 = 1.1

19.8

 

Triangular portion

W3 = 0.2 3.6 25 = 9

0.8 +  0.2 = 0.93

8.4

 

Base slab

W4 = 0.4 2.4 25 = 24

= 1.2

28.8

 

 

W = 137.4

 

212.52

 

Horizontal pressure PH = KaH2 20 42 = 53.33kN

Overturning moment M0 = PH= 53.33 = 71.1 kN.m 

F1 =  = 2.68 > 1.4  …OK

F2 =  = = 1.159 < 1.4

Hence shear key is to be provided.

 

Design of stem:

 

Maximum moment at the base of cantilever

=  Kah2 Kah3  20 43 = 71.11kN.m

Mu = 1.5 71.11 = 106.67 kN-m=0.87 fy Ast d

106.67 106 = 0.87 415 Ast 350

844.125 = Ast

A– 21084.33Ast + 844.125 21084.33  = 0

Ast = 880.93 mm2

Using 12 mm bars, s =  = 128.38 mm

Provide 12mm @ 120 mm c/c.

 

Distribution steel:

Average thickness of wall =  = 300 mm

Ast =  1000 300 = 360 mm2

Providing 180 mm2 on each face and using 8 mm bars.

s =  = 279 mm

Provide 8mm @ 270 mm c/c on tension side.

A mesh of 8mm @ 270 mm c/c is given on compression side of the wall.

 

Curtailment of vertical bars:

 

One third of vertical bars may be curtailed at a, height of 1.2 m from base and another one third at a height of 2.4 m from the base.

20.tif

 

Fig. 4.16

 

Example 4.5.6: A cantilever retaining wall retains an earth embankment with a horizontal top 3.75m above ground level. Design the stem for following data: Density of earth = 19 kN/m3, Angle of internal friction = 30, SBC of soil = 180 kN/m2 Coefficient of internal friction between soil and concrete = 0.5, M20 concrete grade and Fe 415 grade steel.

Ans.:

 

Given data:

H2 = 3.75m, r = 19 kN/m3, = 30, SBC q0 = 180 kN/ m2 , = 0.5, fck = 20 N/mm2,

fy = 415 N/mm2 .

Coefficient of active earth pressure = ka =  =  =

Minimum foundation depth ymin = = = 1.05m

1Provide foundation depth = 1.1m

Height of retaining wall = 3.75 + 1.1 = 4.85 m

 

Preliminary dimensions:

 

B = 0.5 H to 0.6 H = 0.5 4.85 to 0.6 4.85

= 2.425 m to 2.91m

Assume b = 2.5 m

Toe projection = b/3 = 2.5/3 = 0.83

Provide 0.75 m

Thickness of base slab = Thickness of stem

=  = = 0.4m

Assume top width of stem = 0.2m.

Fig.4.17: Preliminary dimensions

 

1

 


 

 

Fig. 4.18: Forces on retaining wall

 

Stability check:

 

 

Weight(kN)

x(m)

M(kN-m)

Weight of backfill

w1 = 1.35 4.35 19 = 111.58

2.5 – = 1.825

203.63

Rectangular portion of stem

w2 = 0.2 4.45 19 = 16.91

0.75 + 0.4 – 0.1 = 1.05

17.76

Triangular portion of stem

w3 = 0.2 4.45 25

= 11.125

0.75 + 0.2 = 0.88

9.79

Base slab

w4 = 0.4 2.5 25 = 25

2.5/2

31.25

 

W = 164.615

 

M = 262.43

 

Horizontal pressure PH = karH2 =  19 4.852 = 74.49 kN

Overturning moment Mo = P = 74.49 = 120.42 kNm

Factor of safety for overturning F1 =  = 1.96 > 1.4

Hence O.K.

F2 = =  = 0.99 < 1.4

 

Design of stem:

 

Maximum moment at the base of cantilever

= karh2  19 = 93.02 kNm

Mu = 1.5 93.02 = 139.525 kNm

Mu(lim) = 0.138 bd2fck 

139.525 106 =  0.138 1000 d2 20

d = 224.84 mm

Provided  = 350mm and D = 400 mm

Ast =  0.5 

=  0.5 20

= 1188.40mm2

 

Corel_SymbolUse 12 mm    bars.

S =  1000 = 95.16 mm

Corel_Symbol Provide 12 mm              @ 90mm c/c

 

Distribution steel:

Average thickness of wall = = 300 mm

st =  1000  300 = 360 mm

Provide 180 mm3 on each face.

Use 8mm bars 

S =  1000 = 279 mm

Provide 8mm bars @ 270 mm c/c on tension face and compression face.

 

3


 

 

Fig.4.19: Reinforcement details

 

Example 4.5.7: Design of heel slab and stability analysis of a cantilever retaining wall is to be carried out for the following data: Height of horizontal backfill = 3.5m, Concrete grade = M20, Steel = Fe415, Backfill density = 18kN/m3, Angle of friction = 30 coefficient of friction between soil and concrete = 0.5, SBC of soil = 150 kN/m3 , depth of foundation = 1.1 m.

Ans.:

 

H2 = 3.5m, r = 18kN/m3, = 30, SBC q0 = 150 kN/m2, M = 0.5, fck = 20N/mm2
fy= 415 N/ mm2  

Coefficient of active earth pressure = k=   =   =

2Depth of foundation = 1.1 m

Height of retaining wall = 3.5 + 1.1 = 4.6m

 

Preliminary Dimensions of Retaining Wall :

B  = 0.5 H to 0.6H = 0.5 4.6 to 0.6 4.6

= 2.3 m to 2.76m

Say b = 2.5m

Toe projection = b/3 = 0.75m

Thickness of base slab = Thickness of stem

=  =

= 0.38 m say 0.4m.

Let top width of stem = 0.4 m 

Fig. 4.20: Forces on retaining wall

 

Stability check:

 

 

Weight (kN)

x(m)

M(kNm)

Weight of backfill

w1 = 1.35 4.2 18

= 102.06

2.5 – = 1.825

186.26

Rectangular portion of stem

w2 = 0.2 4.2 25 = 21

0.75 + 0.4 – 0.1 = 1.05

22.05

Triangular portion of stem

w3 = 0.2 4.2 25

=10.5

0.75 +  0.2 = 0.88

9.24

Base slab

w4 = 0.4 2.5 25 = 25

2.5/2

31.25

 

W = 158.56

 

W = 248.8

 

Horizontal pressure  PH   =  karH2  = 18 4.62 = 63.48 kN

Overturning moment  M0  = PH = 63.48 = 97.336 kNm

Factor of safety for overturning F1 =   = 2.30 > 1.4   Hence O.K.

F2  =  =  = 1.12 < 1.4

 

Design of heel slab :

 

Total moment about ‘o’ = M – M0 = 248.8 – 97.336 = 151.46 KN.m

Total vertical load = 158.56 kW

 

Horizontal distance from o where resultant intersects base line.

=  = 0.955 m

5 Eccentricity  e =  – 0.955 = 0.295 m

Maximum pressure  

P1 =  =

=  108.32 kN/m2

Maximum pressure P2 =

= 18.52 kN/m2

Fig. 4.21

 

6

 

Fig. 4.22: Base pressure

 

0   18.52 1.35   x

2.5   108.32 2.5  89.8 

Pressure intensity at1.35m  1.35 – x x  = = 48.492

=   18.52 + 48.492=67.012 kN/m2  

Weight of backfill = rH1 = 18 4.6 = 82.8 kN/m

Self weight = 0.4 1 25 = 10 kN/m

Total downward load w = 82.8 + 10= 92.8 kN/m

Mmax   = 92.8 – 18.52 –  (67.012 – 18.52) 1.35  1.35

=  52.96 kN-m

 

Mu =   1.5 52.96 = 79.43 kNm

Ast =   bd

=   1000   350=654.25 mm2

Provide minimum reinforcement of 12 mm bars @ 225 mm c/c in both directions.

 

Example 4.5.8: Design cantilever retaining wall for following data: Height of wall = 5.5m, Depth of foundation 1.2 m, Density of soil = 19 kN/m3, Angle of internal friction = 34,
SBC of soil = 225 kN/m2 coefficient of friction base and soil = 0.5. At the top level of backfill, a rectangular GSR is constructed 2m away from wall whose plan details are as below:

(i)Plan area = 15m 50 m (ii) Material M25 and Fe 415, (iii) Total weight of GSR under
     full water condition = 7500 kN. 

7Ans. :

 


 

 

Fig. 4.23: Retaining wall

 

= 34, H = 5.5m, r = 19kN/m3, SBC q0 = 225 kN/ m2 ,=0.5, fck = 20 N/mm2, fy = 415 N/mm2

Coefficient of active earth pressure Ka = =  =

Preliminary dimensions of Retaining wall:

 

B = 0.5H to 0.6 H = 0.5 5.5 to 0.6 5.5 = 2.75m to 3.3m

Provide b = 3m

Toe projection = b/3 = 3/3 = 1m

Thickness of base slab = Thickness of stem =  =  = 0.46 m 0.5m

Let top width of stem is 0.2 m

8

 

Fig. 4.24: Forces on retaining wall

 

Stability check:

 

 

Weight (kN)

X(m)

M(kNm)

Weight of backfill

w1 = 1.5 5 19 = 142.5

3 – = 2.25

320.625

Rectangular portion of stem

w2 = 0.2 5 25 = 25

1.1 + 0.5 – 0.1 = 1.5m

37.5

Triangular portion of stem

w3 = 0.3 5 25 = 18.75

1.1 + 0.3 = 1.3

24.375

Base slab

w4 = 0.5 3 25 = 37.5

3/2

56.25

Water tank

w5 = 10 1.5 5 = 75

3 –  = 2.25

168.75

 

W = 298.75

 

M = 607.5

 

Horizontal pressure PH =  KarH2 =  19 5.52 = 81.18 kN

Overturning moment M0 = P = 81.18 = 148.83 kN-m

Factor of safety for overturning

F1 =  = 3.67 > 1.4 Hence O.K.

F2 =  =  = 1.65 > 1.4

Hence, shear key need not be provided.

 

Pressure under Base slab:

 

Total moment about O = 607.5 – 148.83 = 458.67 kNm

Total vertical load  =   298.75 kN 

=  = 1.53 m

Eccentricity e =  – 1.53 = – 0.03 mm  

e < b/

0.03  < 0.5

Maximum pressure  = = =105.56 kN/m2

Minimum pressure =   = 93.6 kN/m2

 

Design of stem:

 

Maximum moment at base of cantilever

= krh2 =  19 = 148.8 kNm

  Mu = 1.5 148.8 = 223.24 kNm 

 

Mu(lim)= 0.138 bd2fck

 

  223.24 106   =  0.138 1000   d2  20 

d = 284.40 mm

   Provide d  =  450mm and overall depth D = 500 mm

Ast =  

=   =1475 mm2

Corel_SymbolUse 12m m    bars, S    = 1000 = 76.67 mm

Corel_Symbol Provide 12 mm     bars @ 75mm c/c

 

Distribution steel:

Average thickness of wall =  = 350 mm

Ast =  1000   350 = 420 mm2 (Provide half on each face) 

Use 8mm bars 

S =  = 239.3mm

Provide 8mm bars @ 230 mm c/c on tension face and compression face of the wall.

 

Curtailment of vertical bars:

 

One third of vertical bars are curtailed at a height of 1.67m from base and another one third at 3.33m from base.

 

Check for shear:

V =  PH  = 81.18 kN Vu = 1.5 81.18 = 121.77kN

v  =  = 0.27 N/mm2 

Pt  =  =  = 0.25 %

c = 0.4 N/mm2  v < v <cmax

 

No shear reinforcement is required.

 

9Design of Toe slab :

 

0 – 105.56 2  –  ?

3  – 93.6 3  –  11.96

2  –?

 

Pressure at face of toe = 97.58 x = 7.97

M =  97.58 + 1   (97.58 – 93.6 ) 1

=  48.79 + 1.32=50.11 kNm Fig. 4.25 : Base pressure

  Mu =  1.5 50.11 = 75.175 kN.m

d =  450 mm

 Ast 

=  =473.25mm2

Astmin =  1000 450= 540 mm2

Use 12mm bars S = (/4) 122 1000/540 = 209.44 mm

Corel_SymbolProvide 12mm     @ 300mm c/c in both directions 

 

Design of steel slab:

 

0  105.56 

1.5   A

3   93.6

10 3   11.96

1.5  x

x =  = 5.98

  A = 105.56 – 5.98 = 99.58 kN/m2      

Fig. 4.26: Base pressure

 

Weight of backfill = rH1 = 19 5 = 95 kN/m

Self weight = 0.5 3 25 = 37.5 kN/m

Weight of water tank = 10 1.5 5 = 75 kN/m

Total downward load = 207.5 kN/m

Max. Bm =  – 105.56 –   (105.56 – 99.58)1.5

= 233.44 – 118.755 – 2.242=112.44 kNm

 

Mu = 1.5 112.44 = 168.66 kN-m

Ast = =1093.79 mm2

Corel_SymbolUse 12mm  bars.

S =  = 103.39 mm

Corel_Symbol Provide 12 mm     @ 100 mm c/c in both directions.

 

Example 4.5.9: Design an RCC cantilever retaining wall to retain earth embankment 4 m height above the G.L. The angle of surcharge is at an angle of 15 to horizontal weight of soil and its angle of repose is 18 kN/10m3 and 30 respective. The good foundation is available at depth of
1 m below GL, the SBC of soil = 160 kN/m3 coefficient of friction - – 0.62. Use M20 and Fe415.

Ans.:

 

Given: D  = 1 m   ;      H  =  4 + 1 = 5 m

 

1. Preliminary s/c.:

1

(a)  Assuming top width = 120 mm

(b) Width of base slab = 0.55 H to 0.75 H

=0.55 5 to 0.75 5

= 2.75 to 3.75 M

Assuming B = 3.5 m

(c)Toe projection=  or =  or    = 0.83 or 1.167

Assuming Toe projection  = 1 m

(d)  Thickness of base =  to  = 0.33 to 0.5 m

Fig. 4.27

Assuming thickness of base = 0.5 m

 

Thickness of vertical wall

Fa = H2 kah2

Ka =  cos ,

 =  15 , = 30

Ka = 0.373

Pa =  0.373 18 (4.5)2 = 67.97 kN

PaH = Pa cos   = 67.97 cos 15 =  65.65 kN    

Moment   =  PaH = 65.65  (at base max) = 98.48 kN-m

98.48 106 =  0.138 fck bd2,  

Factored   Mu= 98.48 1.5 = 147.71 106 N-mm

Mu = Mulim ,147.71 106 =0.138 fck bd2

12 147.71  106=0.138 20 1000 d2,   d=231.34 mm

D = d + cover = 231.34 + 40 = 271.34

 

AssumingD=400 mm

d    = 400 – 40 = 360 mm

Since the thickness or toe and heel slab

The height of vertical wall. So the design

Of v wall should be taken after toe and heel

1. Width of heel slab  :

= 3.5 – 1 – 0.4  = 2.1 m

2. Force on the body:

 

Fig. 4.28: Geometry of retaining wall

 

(i)     Earth pressure:

15 Pa =  Ka w = 0.373 18 (5 + 0.56)2

= 103.78 kN

PaH = Pa cos   = 103.78 cos 15 

= 100.24 kN                                              

 

(ii) Self weight:

 

(a) Weight of earth upto top

w1 = Area × Density of soil; 

w1 = 2.1 × 4.5 × 18 = 170.1

x1 =  + 0.4 + 1 = 2.45 m

 

(b) Weight of soil above top

\\madhav\Tiff_2016\Subject\Design Of Concrete Structure-II_(UPTU)\30.4.16\4_Q.3.14.tif w2 =  × 2.1 × 0.56 × 18 = 10.58 kN 

x2 =   × 2.1 + 0.4 + 1 = 2.8 m

 

(c)   Weight of vertical wall   

w3 = 0.2 × 4.5 × 25 = 22.5 kN; x3 

= 1 + (0.4 – 0.2) +  = 1.3 m

Weight of triangular portion of vertical wall

w4 =  × 0.2 × 4.5 × 25 = 11.25 kN 

x4 =  × 0.2 + 1 = 1.13 m                                        Fig. 4.29

 

(d) Weight of base slab

 

w5 = 3.5 × 0.5 × 25 = 43.75 m; x5 =   1.75 m

w = w1 + w2 + w3 + w4 + w5  = 258.18 kN

wx = (w1x1 + w1x2 + w3x3 + w4x4 + w5x5) = 564.89 kN.m

 

3. Check against stability:

 

(a) Check for overturning, overturning moment

=  1.2 × 1 +  = 1.2 × 100.24 ×  =222.93 kN-m

Restoring moment =  0.9 × wx = 0.9 × 564.89 = 508.4 kN-m

 

Restoring moment > overturning moment

508.4 > 222.93 safe.

 

(b) Check for sliding :

 

Sliding force = 1.4 × PaH = 1.4 × 100.24 = 140.34 kN

Restoring force = 0.9 w = 0.9 × 0.62 × 258.18 = 144.06 kN

Restoring force > sliding force   Safe.

 

(c) Check for base pressure:

 

1. Considering Pav :

MToe = wx – PaH ×  + Pav × B

v =  w + PaH = 258.18 + 26.86 = 285.04 kN

MToe = 564.89 – 100.24 + 26.86 3.5 = 473.12 kN.m

Z =  =  = 1.66 e  =  – Z =  – 1.66 = 0.09

Pmax =  =  = 94.00 SBC ok.

 

(b) Neglecting Pav :

MToe = wx –  =564.89 – 100.24 = 379.11 kN-m

v =  w = 258.18 kN Z =  =  = 1.47

e =  – z = 0.28 Pmax =   =

= 109.17 kN SBC   safe

 

Pmin =  =  = 38.36 > 0  safe

 

4.  Design of toe slab:

1817 

 


 

 

Fig.  4.31: Base pressure   Fig. 4.32: Resultant pressure

 

From similar

=  y2 = 50.58

Total  = y1 + y2 = 38.36 + 50.58=88.94

=  y4 = 42.486 

Total  = y3 + y4   = 38.36 + 42.486 =80.85  

 

Resultant pressure

At A = 109.17 – 12.5 = 96.67 kN/m3

At B = 88.94 – 12.5  = 76.44 kN/m3

Self weight = 0.5 25 = 12.5 

Shear force  = Area of + Area of rectangle = (1) (96.67 – 76.44) + (1) 76.44

= 86.55 kN

Factored SF = 1.5 86.55 = 129.825 kN

BM = (Area of  C.G. Distance) + (Area of   C.G. Distance)

=  + 76.44 1 0.5 = 44.96 kN-m

Mu   = 1.5 45.96 = 68.94 kN-m

 

Check for depth:

 

Mu = Mulim 67.44 106 = 0.138 fck bd2

67.44 106 = 0.138 20 1000 d2 

d = 156.32

D = 156.32 + 40=196.32 mm <Dassumed 

 

Provide D = 500 m

d = 460 mm

 

Area of steel:

Ast =   bd

=  1000 460 = 423.39 mm2

Astmin =  b D = 600 mm2 as Ast<Astmin

Providing Ast = 600 mm2 Ld   + lo

47    + 46020.84

Corel_SymbolCorel_SymbolAssuming 12 mm    bars

Spacing  =   = 188.49 < 3 d or 300  ok.

 

Providing 12 mm   bar @ 180 mm c/c

 

Area of distribution steel:

 

=  b D =  1000 460 = 552 mm2
    Provide Astmin= 600mm2

Assuming 8 mm bars

Spacing  =  = 83.77 80 mm  ok.

Check for shear:

v =   =   = 0.28 N/mm2

Point % =   =  = 0.136 %

c = 0.28 N/mm2; v = c

Design of shear reinforcement is not required

 

(6) Design of heel slab :

 

Resultant pressure

(a) At  c =   80.85 – 12.5 – 72

=   – 3.65

19(b) At D  =   38.36  – 12.5 – 80.96

=   – 55.1

Max S.F =    Area of + Area of

=   2.1 (55.1 – 3.65) + 3.65 2.1

=   61.69 kN

Factored SF  = 1.5 61.69 = 92.53 kN

BM= (Area of  cg. Dist) + (Area of  cg. Dist)

=   + 3.65 2.1

= 83.68 kN-m

 

Factored B.M. = 1.5 83.68 = 125.52

 

Check for depth:

 

Mu = Mulim 

125.52 106 = 0.138 1000 d2 20  

d = 213.25 

D = 213.25 + 40  Fig.                            4.33: Pressure diagrams

= 253.25 mu < depress  o.k.

Provide D =  500 mm d = 460 mm

 

Area of steel:

Ast = 1000 460=783.86 mm2

Ld =  + ld 47  =  + 460

 = 38.65 mm

 

\\priya\p (D)\Corel_Symbol.tifAssuming 16 mm bars

Spacing =  = 256.5 < 3d or 300 mm

\\priya\p (D)\Corel_Symbol.tif Provide 16 mm @ 250 mm.

 

Distribution steel:

 

Ast =  b D = 1000 500 = 600 mm2

\\priya\p (D)\Corel_Symbol.tifAssuming 8 mm   bars

 

Spacing  =  = 83.77

\\priya\p (D)\Corel_Symbol.tifProviding 8     mm

 

Check for shear:

pt

c

0.15

0.28

0.25

0.36

v =  =  = 0.2 N/mm2

pt =  =  = 0.17

c = 0.28 +  (0.17 – 0.15) = 0.296 N/mm2

k = 1

v < c 0.2 < 0.296

Shear reinforcement is not required.

 

(7) Design of vertical wall

 

Pa =  Kaw = 0.373 16  (4.5 + 0.56)2=76.40 kN

PaH = Pa cos = 76.4 cos 15 = 73.79

pav = Pa sin = 19.77

BM at base = PaH = 73.79 = 124.46 kNm

Mu = 1.5 124.46 = 186.69

 

Check for depth:

 

Mu =   Mulim 186.69 106 =   0.138 1000 d2 20

d =   260.07      D =   300.07 < Dassumed (400) ok.

providing D = 400 mm  d = 360 mm

 

Area of steel   =   bd

=  1000 360 = 1581.13

ld   + lo

Shear force, v = PaH = 73.79 vu = 1.5 73.79 = 110 .68

ld   + 360

47   2046.75   43.54

Corel_SymbolProviding 20 mm     bars

Spacing = =198.69 mm < 3d or 300 mm 

Corel_SymbolProviding 20 mm     190 mm c/c

 

Curtailment: pressure at half height

 

Pressure at  = 2.25 from Top

Pa =  0.373 16 (2.25 + 0.56)2 = 23.56 kN

PaH = Pa cos = 23.56 cos 15 = 22.75 kN

BM = PaH = 22.75 = 21.31 kN-m

Mu = 1.5 21.3 = 31.965 kN-m D =  = 0.3 m

d = 300  – 40 = 260 mm

Ast = = 260 1000

= 350.48 mm2

(Ast)min =  1000 300 = 360 mm

 

Providing Ast 360 mm2

 

Assuming 12 mm \\priya\p (D)\Corel_Symbol.tif bar

Spacing =  = 314 < 3d or 300 300 mm

 

Check for shear :

 

SF =  PaH = 73.79 kN 

Factored SF = vu = 1.5 73.79 = 110.685 kN

v =  =  = 0.307 

pt =     =   = 0.465

 

pt  c

0.25   0.36

0.5   0.48

 

c = 0.36 +  (0.465 – 0.25)  = 0.46

k = 1   c = 0.46 

v < c safe.

20

 

Fig.4.34: Reinforcement details

 

Example 4.5.10: For the cantilever wall of height 3.5m, fix the basic dimensions of various elements. The angle of repose of soil is 30. SBC of soil is 200 kN/m3 and density of soil is 18 kN/m3. Friction coefficient between soil and concrete is 0.55. Do the check for stability, sliding and overturning. Design the stem of the retaining wall.

Ans.:

 

H2 = 3.5m, γ = 18kN/m3, = 30, SBC q0 = 200 kN/m2, μ = 0.5, fck = 20N/mm2
fy= 415 N/ mm2    

Coefficient of active earth pressure = k=   =   =

Minimum depth of foundation is

ymin =  = = 1.23 m

Provide depth of foundation  = 1.25 m

Height of retaining wall =3.5 + 1.25 = 4.75 m

 

Preliminary Dimensions of Retaining Wall:

 

B  =  0.5 H to 0.6H = 0.5 4.75 to 0.6 4.75

= 2.375 m to 2.85m

 

Say b = 2.7m

Toe projection = 2.7/3 = 0.9m

Thickness of base slab = Thickness of stem

= 

= 0.395 m say 0.4m.

Let top width of stem = 0.2 m

 


 

4.6.1 Various parts of a counter fort retaining wall:

 

A counter fort retaining wall is to be provided where the height of earth fill is greater than 6m.

aFig. **

 

Fig. 4.35: Parts of counter fort retaining wall

 

4.6.2 Design steps for a counter fort retaining wall:

 

Design steps:

 

1. Tentative trial section.  

2. Forces

3. Stability check

(i) Overturning  (ii) Sliding  (iii) Base pressure

4. Design of section

(i) Vertical wall 

56 (ii) Toe slab  

(iii) Heel slab

(iv) Counter fort

 

(I) Trial section:

 

1. Base width = 0.6 H to 0.7 H (H = total height of wall)

2. Toe width =  to   or 

3. Thickness of vertical walls @ 0.3 m

4. Counter fort thickness @ 0.4 m

5. Thickness of base slab = 2l  or 4l

 

l  – Spacing of  counter fort in m

H – Height in m

 

4.6.3 Various forces acting on a counter fort retaining wall:

 

57

Forces:

 

(1)    Horizontal back fill :

 

Intensity of earth pressure  = Ka wH

Ka  =  Coefficient of active earth pressure.

Ka  =  

w   =  unit weight of soil

    = angle of repose           Fig. 4.37 : Pressure distribution diagram (Horizontal backfill)

 

Total pressure   =  Ka wH H Pa  =    KawH2

 

(2) Inclined backfill (with surcharge) :

 

58

 

Fig. 4.38: Pressure distribution diagram (Inclined backfill)

 

Active earth pressure,  Pa   =   Ka w

Ka = cos

Where,   = angle of surcharge  = angle of repose

 

(3) Passive earth pressure:

The passive earth pressure is exerted when it has tendency to move towards the backfill such a case may occur when the retaining wall supports soil of different depths on both.

PP =  Kp wH2  Kp  =  

 

(4) Self weight of wall

(i) Weight of earth (without surcharge)

59 w1 =  width height density of soil

x1  =  distance of load w1 from toe i.e. (A)

 

(ii) Weight of earth (with surcharge)

w2  =  Area of triangle density of soil

x2 =  distance of load w2 from A

 

(iii) Weight of wall

w3 =   Thickness height density of conc.

x3 =   distance of  load w3 from A 

 

Fig. 4.39: Loads of different part

In retaining wall

 

(iv) weight of base slab

w4  = Thickness width Density of conc

x4  = distance  of  load w4 from A

w = w1 + w2 + w3 + w4 M  @ A

MToe = w1 x1 + w2 x2  + w3 x3 + w4 x

 

4.6.4 Stability check for a counter fort retaining wall:

 

(i) Check against overturning : (Pg 33, cl-20.1)

(1) Overturning moment = Pa

(2) Restoring moment = wx = w1 x1 +w2 x2 + w3 x….

 

0.9 Restoring moment 1.2 overturning moment

0.9 wx 1.2 Pa ( safe)

If unsafe change the dimensions

 

(ii) Check against sliding :  (clause 20.2)

(1) Sliding force  = 1.4 Pa

(2) Restoring force = 0.9 w 

Restoring force sliding force

0.9  w 1.4 Pa                                    …Ok

If it is unsafe there is no need to change the dimensions but provide shear key.

 

(iii) Check for base pressure :

(1) Maximum pressure = Pmax =

Eccentricity = e =  – z z = 

Pmax  S.B.C. Of soil

(2) Maximum pressure = Pmin = 0

 

Problems based on Design of Counterfort Retaining Walls

 

Example 4.6.5: Design a retaining wall for the following data.

 

(1) Height above GL = 6M.  (2) Depth of foundation below GL = 1m

(3) The density of soil = 16 kN/m3  (4) Angle of repose = 30

(5) Surcharge = 10   (6) SBC of foundation = 150 kpa

(7) Coefficient of friction = 0.6.

Use M20 and Fe 415. The counter fort is on earth side only.

Ans.:

 

(1) Preliminary section:

 

Total height of wall = H = 6 + 1 = 7m

(i) Base width = 0.6H to 0.7H=0.6 7 to 0.7 7=4.2 to 4.9 m

Assuming B = 4.5 m

(ii) Toe width =  to  or = to  or  = 1.5 to 1.125 or 1.17

Assuming toe width = 1.2 m

 

(iii)  Assuming thickness of vertical wall = 0.5 m

(iv)  width of heel slab =  4.5 – 1.2 – 0.25 = 3.05 m

(v) Thickness of base slab = 2lH or 45

Assuming l = spacing of counter fort = 3.5 m

Thickness of base slab = 37 or 49

Assuming  = 40 cm

 

(2) Forces on retaining wall:

 

(i) Earth Pressure H1 = H + y1    

60

 

Fig. 4.40: Geometry of retaining wall

 

62

H1 = 7 + 0.54=7.54 m        

Pa  =    Ka w          Fig. 4.41: Height of surcharge

61w =    Specific weight of soil

=   16 kN/m(given)

Ka =   cos

Tan 10  = 

y1 = 0.54 m

– angle of surcharge

= 10 and – angle of repose

= 30 

 

Ka = 0.35                                            Fig. 4.42: Loads and pressure

Distribution diagram

Pa =  0.35 16 (7.54)2=159.18 kN

Acting at H1/3 from base   =  = 2.51m from base

Horizontal component PaH = Pa cos =159.18 cos 10=156.76 kN

Vertical comp Pav = Pa Sin = 27.64 kN

 

(3) Self weight:

 

(i) Weight of soil (up to top)

w1 = area density of soil = 3.05 (7 – 0.4) 16 = 322

x1 = 3.05/2 + 0.25 + 1.2=2.975 m

 

(ii) Weight of surcharge,

w2  = ½ 3.05 0.54 16 = 13.2 kN

x2 = 2/3 3.05 + 0.25 + 1.20 = 3.48 m

 

(iii) Weight of vertical wall (stem)

w3 = 0.25 6.6 25 = 41.25 kN x3  = 1.2 +  = 1.325 m

(iv) Weight of base slab,

w4 =  0.4 4.5 25 = 45 kN                 x4 =   = 2.25

w =  w1 + w2 + w3 + w4 = 421.55 wx = w1 x1 + w2 x2 + w2 x3 + w4 x4

wx = 1158.48 kN – m

 

(4) Check for stability:

 

(i) Check against overturning:

Overturning moment =  1.2 PaH=1.2 156.76 = 472.78 kN – m

Restoring moment = 0.9  Wx=0.9 (1158.48)=1042.63

Restoring moment > overturning moment

safe against overturning

 

(ii) Check against sliding:

Sliding force  =  1.4 PaH = 1.4 156.76=219.46 kN

Restoring force =  0.9  w=0.9 0.6 421.55=227.64 kN

 

(iii) Restoring force is greater than sliding force  safe

Check against base pressure:

 

(a)     Considering Pav :

Moment @ Toe = MToe  = w1 x+ w2 x2 + w3 x3 + w4 x+ Pav B – PaH

= 1158.48 + 27.64 4.5 – 156.76

MToe = 888.86 –m              Z =    =

v =   421.55 + 27.64 = 449.19 kN     Z ==1.978 1.98

e =    – z =  – 1.98 = 0.27

Pmax =     =

S.B.C.(150 kN/m2)=135.74  150

 

Pmin = => 0

= 63.88 > 0   OK.

 

(b) Neglecting Pav :

MToe  = w1 x+ w2 x+ w3 x+ w4 x4 – PaH=1158.48 – 156.76

= 766 kN – m

v = w = 421.45 kN     Z =   =  = 1.81

e =  – Z =  – 1.81 = 0.44

Pmax =  S.B.C.=

150 kN/m2 =148.6 150

  OK

Pmin = > 0=> 0=38.72 > 0  OK

 

(5) Design of vertical wall:

 

(i) A vertical wall is designed as vertical continuous slab spanning between counter forts

Span = spacing of counter fort = 3.5 m

63

 

Fig. 4.43: Shear force and Bending moment distribution diagram

 

Horizontal component of base pressure w1 = ka w H1 cos

Ka – coefficient of active earth pressure

w – Density of soil

w1   = 0.35 16  (7.54 – 0.4) cos 10=39.37

Maximum BM =  = = 40.19 kN.m

l  = spacing of counter fort

Ultimate BM  = Mu  = 1.5 40.19=60.29 kN.m

Maximum S.F = 0.6 w1l

V  = 0.6 × 39.37 × 3.5=82.67 kN

Vu  = 1.5 × V = 1.5 × 82.67 = 124.01 kN

 

(ii) Check for depth:

 

Maximum BM = Mu lim Mu = Mulim 

60.29 × 106  = 0.138 bd2 fck 60.29 × 106 =  0.138 × 1000 × d2 × 20

d  = 147 mm

Assuming cover 40 mm.

 

Dread  = d + cover = 147 + 40

= 187 mm  < Dassumed

< 250 mm

Providing D = 250 mm and d = 210 mm

 

(iii) Area of steel:

 

(a) Area of main steel,

Ast = 

Bd =     100 × 2

= 870.42 mm2 ld   + lo

ld =  =  = 47  ….  For M20 and Fe415.

47    + 210   14.81

 

Providing 12 mm dia bar.

Spacing  =  = 129.93 < 3d or 300 ok.

Providing 12 mm diameter bar @ 120 mm c/c from base upto 3.3. m.

 

Curtailment:

 

Providing 12 mm diameter bar @ 240 mm c/c at 3.3 m from base and upto top of wall.

(b) Area of distribution steel =  × b × D= × 1000 × 250 = 300 mm2

Assuming 8 mm diameter bar.

Spacing  =  = 167.59 < 5 d or 450 mm

Providing 8 mm @ 160 mm c/c.

 

(iv) Check for shear                                      IS : 456-2000/Page 73/table 19

Pt %

c

0.25

0.36

0.5

0.48

 

v =   =    = 0.59 N/mm2

pt % =   = 

pt % = 0.44

c = 0.36 +  (0.44 – 0.25) = 0.45 N/mm2

v > c

Design of shear reinforcement is required

Design shear force = Vus

Vus = uc bd   = 124 × 103 – 0.45 × 1000 × 210 = 29.51 × 103 N

sv = 

Assume 8 mm 5 legged stirrups.

(1) sv =  = 645.7 mm

(2) sv =     =   =226 mm

(3) sv = 0.75 d or 300 mm = 0.75 × 210 or 300  = 157.5 mm

 

Taking least value of the three

= 157.5  mm150 mm

Corel_Symbol Providing 8 mm   stirrups @ 150 mm c/c

 

Final provision: 

 

Corel_Symbol(1) Main steel = 12 mm @ 120 mm c/c upto 3.3 m from base.

Corel_Symbol = 12 mm @ 240 mm c/c from 3.3 to 6.6 m from base.

Corel_Symbol(2) Distribution = 8 mm @ 160 mm c/c steel

Corel_Symbol(3) Stirrups = 8 mm legged stirrups @ 150 mm c/c

 

Design of toe slab:

 

Designing as cantilever slab fixed at the face of vertical wall.

From similar  property

= 

y2 = 80.58

Total ordinate = y1 + y2 = 38.72 + 80.58 = 119.3                

88

 

Fig.  4.44: Upward pressure distribution diagram

 

Resultant pressure

(1) At A = 148.6 – 10 = 138.6 kN/m2 ()

(2) At B =119.3 – 10 = 109.3 kN/m2 ()

Shear force = Area of triangle + Area of rectangle

89  =  (1.2) (138.6 – 109.3) + 1.2 × 109.3

= 148.7 kN

Factored shear force

Vu = 1.5 × 148.7 = 223.12 kN

BM = (Area of rectangle × c.g. Dist.)

+ (Area of triangle × c.g.dist)

M =   1.2 × 109.3 ×  +  (1.2)

× (138.6 – 109.3)  × 1.2

=   92.76 kN.m

Mu = 1.5 × 92.76= 139.14 kN-m

 

Check for depth:

 

Maximum BM = 139.14 kNm 

Mulim  = 0.138 fck bd2

Mu lim  = BM max 

0.138 fck bd2  = 139.14 × 106

0.138 × 20 × 1000 × d2 = 139.14 × 106

d  = 224.5 mm

Assuming cover =40 mm                      Fig.  4.45: Resultant pressure

Diagram

 

Drequired  = 224.5 + 40 = 264.5 mm <Dassumed (400 mm) 

Providing D = 400 mm

d  = 400 – 40 = 3600 mm

 

Area of steel reinforcement:

 

Ast = b.d

=   × 360 × 1000=1146 mm2

 

Check for Ld

Ld =  + L0 For M20 and Fe 415 Ld=

Ld = 47  L0 = d = 360 mm

  47    + 360   20.92 mm

 

Corel_SymbolAssuming 16 mm  bars

Spacing  =   = 175.31 170 mm < 3d or 300.

 

Corel_SymbolProviding 16 mm   bars @ 170 mm c/c

Provide at bottom because

Area of distribution steel =  b × D= × 1000 × 400 = 480 mm2

Corel_SymbolAssuming 8 mm  bars

Spacing  = < 3 d or 300=104 mm 100 mm

Corel_SymbolProviding 8 mm  bars @ 100 mm c/c

 

Check for shear

v =   =   = 0.62

 Pt =  Ast(pro      = 

=   = 1182.72 mm

= 

= 0.33

From IS page 73 table (19)

Pt

c

0.25

0.36

0.5

0.48

 

c = 0.36 +

= 0.3984 N/mm2

v > c

Design of shear reinforcement is required.

c  cmax

 

Design of shear reinforcement:

 

Corel_Symbol vus = vuc bd = 223.12 × 103 – 0.39 × 1000 × 360 = 82.7 × 103 N

 

Assuming 8 mm 5 legged stirrups.

(1) sv = = = 4.28mm (Not feasible)

(2) sv =  = =226 mm

(3) sv = 0.75 d or 300 mm

Taking least value = 226 mm 

Spacing = 220 mm

Corel_Symbol Providing 8 mm   5 lugged stirrups @ 220 mm c/c.

 

Final provision:

 

Corel_Symbol(1) Main steel  =   16 mm  @ 170 mm c/c 

Corel_Symbol(2) Distribution steel =   8 mm  @ 100 mm c/c 

Corel_Symbol(3) Stirrups  =   8 mm  5 legged stirrups @ 220 mm c/c.

 

Design of Heel slab:

 

(1) Base press

(2) Self weight = 0.4 × 25 = 10

\\madhav\Tiff_2016\Subject\Design Of Concrete Structure-II_(UPTU)\25-04-2016\90.tif

 

\\madhav\Tiff_2016\Subject\Design Of Concrete Structure-II_(UPTU)\25-04-2016\91.tif

 

Fig. 4.46             Fig. 4.47 

 

(3) Earth press

(a) At left edge = 6.6 × 16 = 105.6 (b) At right edge = 7.15 × 16 = 114.64

(4) Resultant press

(a) At left edge = 113.19 – 10 – 1056 = – 2.49 kN/m2

(b) At right edge = 38.72 – 10 – 11464 = – 85.52 kN/m2

Taking maximum value

w2  = 85.52 kN/m2

Maximum SF, v = 0.6 w2l=0.6 × 85.52 × 3.5  

l   = spacing of counter fort = 3.5 m

= 179.59 

Factored S.F.

vu = 179.59 × 1.5 = 269.38 kN

Max BM = 

M = 85.52 =87.3 kNm

Factored B.M.,   Mu = 1.5 87.3 = 130.95 kNm

 

Check for depth:

 

Mu = Mu(lim) 130.95 106 = 0.138 bd2 fck

130.95 106 = 0.138 1000 d2 20

d = 217.84 mm D   = 217.84 + 40=257.84 Dassumed (400 mm)

 

Providing D = 400 mm d = 400 – 40 = 360 mm

 

Area of steel:

Ast =  bd

= 1000 360 mm=1074.5 mm2

 

Check for Ld :

Ld   + L0

For Mw and Fe415 Ld = 47

L0 = d = 360 mm 47    + 360

  18 mm

 

Assuming 16 mm bar

Spacing =  =187 mm 3d or 300

Providing 16 mm @ 180 mm c/c

 

Distribution steel:

 

Ast =  b D= 1000 400=480 mm2

Assuming 8 mm bars

Spacing = =104 100

Providing 8 mm  @ 100 mm c/c

 

Check for shear:

 

V =  = =0.74 N/mm2

pt = ,  Ast(prov) =   = 1117 mm2

= =0.31

 

 

M20c

0.25

0.36

0.5

0.48

 

 

c = 0.36 +  (0.31 – 0.25)=0.38 N/m2

 

For slabs k = 1 (Pg. - 72)

v  kc

Design of shear reinforced is required

 

Design of shear reinforcement:

 

Vus = Vuc bd=269.38 103 – 0.38 1000 360=132.58 103 N

 

Assuming 8 mm 5 legged stirrups

(I) SV = ==246.39

(II) SV = ==226.85

(III) SV = 0.75d or 300=0.75 360 or 300=270

 

Taking the least value=226.85220 mm 

Corel_SymbolProviding 8 mm diameter   5 legged stirrups @ 220 mm c/c

 

Example 4.6.6 :Suggest suitable proportions for a counterfeit retaining wall to support difference in ground elevation of 9m, the depth of foundation may be taken as 1.5 m below ground level, with a safe bearing capacity of 160 kN/m2. Assume a level backfill with a unit weight of 16 kN/m3 and an angle of shearing resistance of 30 . Also, assume coefficient of friction = 0.5 between soil and concrete. Check the stability of the wall.                                                                                   

Ans.:

 

Step 1:  Proportioning of retaining wall :

 

H2 = 9 m, qo = 160 kN/m2, = 30, r = 18 kN/m3

Coefficient of active earth pressure Ke =  = =

Depth of foundation = 1.5 m

Total height of retaining wall H = 9 + 1.5 = 10.5 m

 

Base width = 0.5 H to 0.6 H = 0.5 10.5 to 0.6 10.5

= 5.25 m to 6.3 m

Let base width b = 5.5 m

Toe projection  =  =  = 1.83 m 1.9 m

Width of counter forts = 0.03 H to 0.06 H = 0.03 10.5 to 0.06 to 10.5

= 0.315 m to 0.63 m

Let width of counter fort = 0.5 m

Thickness of stem = thickness of base slab  =   =  = 0.42

Say thickness of stem = 420 mm

From calculations above, selected section is shown in Fig. 2.48

15.tif

 

Fig. 4.48

 

Step 2:  Stability check :

 

Sr. No.

Force

Magnitude (kN)

(m)

M (kN-m)

1.

W1 = weight of back fill

4.58 10.5 18 = 856.62

5.5 –  = 3.91

3349.38

2.

W2 = weight of stem

0.42 10.5 25 = 110.25

1.9 +  = 2.11

232.62

3.

W3 = weight of base slab

0.42 5.5 25 = 57.75

 = 2.75

158.81

 

 

W = 1024.62

 

M = 3740.81

 

Overturning moment   = Ka= 18 (10.5 + 0.42)3 = 1302.17 kN-m

Factor of safety against overturning

=  = 2.58 > 1.4   Hence ok

Sliding force pH = Ka= 10.922  = 357.74 kN

Resisting force =  (0.9W1 + W2 + W3)

=0.5 (0.9 856.62 + 110.25 + 57.75) = 469.479 Kn

 

Factor of safety against sliding =  = 1.31 < 1.4

Hence, shear key is required. Provide a shear key of depth 420 mm.

 

Example 4.6.7: Design of counter fort Retaining wall for following :

(1) Height of vertical wall above GL = 7.5 m

(2) The earth leveled with the top (No surcharge)

(3) Density of earth fill = 16 kN / m3

(4) Angle of repose = = 28

(5) Foundation depth below G.L = 2m

(6) Safe bearing capacity of soil = 200 kN/m2

(7) Counter fort spacing = 3.5m

(8) Coefficient of friction = = 0.45                        (25 Marks)

Ans.:

 

Assuming M20 and Fe415.

 

Given: height of wall above G.L = 7.5 m

Depth below GL = 2m, Total height of wall = 9.5 m = H,

Density of soil = w = 16 kN/m3

Angle of repose = = 28; M20 and Fe415

 

(1) Preliminary section:

 

(1) Total height of wall, H = 9.5 m

(2) Base width = 0.6 H to 0.7 H = 0.6 9.5 to 0.7 9.5 = 5.7 to 6.65 m

 

Assuming B = 6m

(3) Toe width  =  to  or  = to  or =2 to 1.5 or 1.58

 

Assuming the width = 1.7 m

 

(4) The following thickness of vertical wall = 0.3 m

(5) Width heel slab = 6 – 1.7 – 0.3 = 4m

(6) Thickness of base slab = 2lH or 4 l

l        = spacing of counter fort = 3.5 m

Thickness of base slab = 2 3.5 9.5 or 4 3.5 =66.5 cm or 43.5 cm

 

Assuming thickness of base slab = 0.5m

 

(2) Forces on retaining wall:

(i) Earth pressure

66

 


 

 

Fig.  4.49: Loads in retaining wall

 

Pa =  Ka w H2 Ka = 

= =0.36

Pa =  0.36 16 (9.5)2 – = 3.16 m=259.92 kN

 

(ii) Self weight:

 

(1) Weight of soil up to top, w1 = area density=4 9 16 = 576 kN

x1 =  + 0.3 + 1.7=4 m

(2) Weight of vertical wall

w2 = 0.3 9 25 = 67.5 kN x2  = + 1.7 = 1.85 m

(3) Weight of base slab,

w3 = 6 0.5 25 = 75 kN x3 =  = 3 m

w = w1 + w2 + w3 = 576 + 67.5 + 75 = 718.5 kN

wx = w1 x1 + w2 x2 + w3 x3=(576 4) + (67.5 1.85) + (75 3)

= 2653.88 kN.m

 

(3) Check for stability:

 

(i) Check against overturning

Overturning moment = 1.2 Pa=1.2 259.92 =987.7 kN.m

Restoring moment = 0.9 wx=0.9 2653.88=2388.49 kN.m

Restoring moment > overturning moment

Safe against overturning.

 

(ii) Check against sliding

Sliding force = 1.4 Pa = 1.4 259.92=363.89 kN

Restoring force = 0.9 w=0.9 0.45 718.5=290.99 kN

Restoring force sliding force

Not safe in shear

Providing shear key

 

(iii) Check against base pressure:

Pmax = < SBC V = w1 + w2 + w3=718.5

e =  – Z

Taking moment @ Toe

MToe =   w1 x1 + w2 x2 + w3 x3 – Pa

=   2653.88 – 259.92 =1830.8  kN-m

Z =   == 2.55 m

e =    – 2.55=0.45 m

Pmax =   =173.64 kN/m2 SBC (200 kN/m2)  …O.K.

Pmin = > 0=> 0=65.86 > 0   OK

 

(4) From Similarity of triangles:

 

= 

y2  = 77.23

Total = y1 + y2 = 65.86 + 77.23

= 143.04

67  = 

y4  = 71.85

Total   =         y3 + y4  

= 65.86 + 71.85

= 137.7


     

 

Fig.4.50: Pressure distribution diagram

 

(5) Design of Counterfort:     

68

 

Fig. 4.51: Geometry of retaining will

 

Tan    =                                   =     66.03

 = 90 – =23.97 sin  =  

69sin 66.03 = 

D = 3929.43

D = 4000 mm

Assuming cover  = 100 mm    

 

Fig. 4.52

d = 4000 – 100=3900 mm

 

Load transferred by vertical wall = Horizontal pressure Spacing of counter fort

 

= Ka w H1 l  H1 – height of vertical wall

= 0.36 16 9 3.5=181.44 kN/m

F = w1 H/2=181.44 =816.48 kN

Bm =  = =2449.44 kN.m

Factored   S.F = Vu = 1.5 816.48 =1224.72 kN

Factored BM = Mu = 1.5 2449.44 =3674.16 kN

 

For varying depth section

Vu (design) = Vu –  =1224.72 103–= 805.8 103N

 

Check for depth:

 

Mu = Mu (lim) 3674.16 106 = 0.138 bd2 fck 

3674.16 106 = 0.138 400 (d2) 20 

d = 1824.29 mm < dsub

Safe

 

Providing   D = 4000 mm                  d =  3900 mm

 

Area of steel:

Ast = bd

= 

=        2708.17 mm2

 

Check for development length

7 Ld   + Lo

For M20 and Fe 415 Ld = 47

47  + 3900

 179.9 mm

Provide 20 mm bars

Number of bars = 

= 8.6 9 bars                           Fig. 4.53

 

(a)              The tension between counter fort and vertical wall

(Design of horizontal   stirrups)

 

For 1m height of counter fort

Tension T = Pressure on vertical wall spacing  1m=Ka WHl 1

= (0.36 16 9) 3.5=181.44 kN

Tu = 1.5 181.44 = 272.16 kN

 

Assuming sp of stirrups = 200 mm c/c

For 1m height number of stirrups = 5

Asv = ==150.76 mm2

 

(b) Check for shear for horizontal stirrups

v = = = 0.52 N/m2

Pt % =  =  = 0.18

From table 19, pg. 73

c = 0.30 N/m2 v > c

 

Design of shear reinforcement is required.

 

Vus = Vu (design) – c bd

=   805.8 103 – 0.30 400 3900

=   337.8 103 N

Sv =  200 = 

71Asv = 47.97 mm2

Total Asv  = 150.76 + 47.97=198.73 mm2

 

Assuming 2 legged stirrups

2 2 = 198.73 

  = 11.24

Providing 12mm 2 legged stirrups

@ 200 mm c/c from base to   

= 4.5 mand @ 400 mm c/c from 4.5 m upto top.

Direct tension between heel slab and

Counterfort (vertical stirrups)

 

Resultant:

At left edge     = 137.5 – 12.5  – 144

= – 19

At right edge  = 65.86 – 12.5 – 144

= –  90.64kN/m 

Taking greater value

 

T = maximum pressure in heel slab spacing of counter fort

=90.64   3.5 1 = 317.24 kN

Tu = 1.5 317.74 = 475.86 kN

Number of stirrup 

S =  = force taken by one stirrup

Assuming 12 mm diameter 2 legged stirrups

Number of stirrups  =  = 5.8 6 /m

1

 

Fig. 4.54: Base pressure diagram

 

Spacing =  = 166.66 160 mm c/c

Providing 12 mm dia. 2 legged stripes @ 160 mm c/c.

 

9

 

Fig. 4.55: Reinforcement details

 

Example 4.6.8: Design a counterfort retaining wall for the following data

1. Height of steam above GL = 8 m  

2. Earth fill level with top.

3. Density of earth fill = 16 kN/m3  

4. The foundation depth below the GL = 1.7 m

5. Angle of repose, = 30   

6. S.B.C. Of soil = 200 kN/m2

7. Counter fort spacing = 3.5 m c/c.  

8. Coefficient of friction between the soil and slab = 0.5

Assuming M20 and Fe415

1. Height of stem above GL = 8m   

2. Foundation depth             below GL = 1.7 m

3. Total height of step = 8 + 1.7 = 9.7 m  

4.  = 30

5. w = 16 kN/m3        

6.  = 0.5

Ans.:

 

1. Preliminary dimensions:

 

(i) Total height of wall = 9.7 m 

(ii) Base width = 0.6 H to 0.7 H

= 0.6   9.7 to 0.7 9.7 = 5.82 to 6.79 B = 6.5 m

(iii) Toe width =  to  or

=  to  or  = 2.16 to 1.625 or 1.61 = 1.7 m

(iv) Thickness of vertical wall = 0.3 m

(v) Width of heel slab = 6.5 – 1.7 – 0.3 = 4.5 m

 

(ii)  Thickness of base slab  = 2lH or ul=2 3.5 9.7 or 4 3.5

=67.9 or 43.6 cm

 

Assuming thickness of base slab = 0.5 m

 

(2) Forces on retaining wall:

 

(i) Earth pressure

\\madhav\Tiff_2016\Subject\Design Of Concrete Structure-II_(UPTU)\30.4.16\1_Q.3.22.tif

 

Fig.4.55: Forces on retaining wall

 

Pa =  KawH2  Ka =   =   = 0.33

Pa =  0.33 16 (9.7)= 248.39 

 =  = 3.23 m

 

(ii) Self weight

 

(1) Weight of soil up to top,

w1 = area  density =4.5 9.2 16 = 662.4 kN

x1 =  + 0.3 + 1.7 = 4.25 m

2. Weight of vertical wall

w2 = 0.3 9.2 25 = 69 kN x2 =  + 1.7 = 1.85 m

3. Weight of base slab

w3 = 0.5 6.5 25 = 81.25 kN

X3 =  = 3.25 m   w = 662.4 + 69 + 81.25 = 812.65 kN

wx = w1x1 + w2x2 + w3x3 = 3206.91 kN-m

(3) Check for stability:

 

(i)  Check against overturning

Overturning moment   = 1.2 Pa=1.2 248.39 3.23 = 962.76 kN-m

Restoring moment       = 0.9 wx=0.9   3206.91= 2886.22 kN-m

Restoring moment       > overturning moment

2886.22       > 962.76

   Safe against overturning.

 

(ii) Check against sliding

 

Sliding force = 1.4 Pa = 1.4 248.39 = 347.75 kN

Restoring force = 0.9 w=0.9 0.5 812.65 = 365.69

Restoring force > sliding force

   Safe in shear

 

(iii) Check against base pressure

 

Pmax = < SBC  M = w + w2 + w3 = 812.65

e =  – Z

Taking moment (a) Toe

MToe = w1x1 + w2x2 + w3x3 – Pa=3206.91 – 248.39

=         2404.61 kN-m

Z  =   =   = 2.96 m e  =  – Z = 0.29 m

Pmax = =158.49  SBC (200 kN/m2)

Pmin = > 0 = 91.55 > 0   OK.

 

(4) Design of vertical wall:

 

(i) Vertical wall is designed as vertical slab spanning between counterfort.

 

Pressure intensity at bottom of wall = KawH1=0.33 16 9.2 = 48.57

 

Maximum SF = 0.6 w1l= 0.6 48.57 3.5

= 102 kN

Factored SF = 1.5 102 = 153 kN

Maximum BM =  =

= 49.58 kN-m

 

4Factored BM   = 1.5 49.58

= 74.37 kN-m

 

(ii) Check for depth

 

Max BM = Mulim 

106 74.37 = 0.138 bd2 fck

106 74.37 = 0.138 1000 d2 20

d = 164 mm

 

Assuming cover 40 mm

Drequired  = d + 40 = 164 + 40

= 204 < dassumed< 300 mm

Providing, D  = 300 mm D = 260 mm Fig. 4.56: Pressure distribution

 

(iii) Area of steel:

(a) Area of main steel =   – bd

= 0.5  1000 260

= 850.34 mm2

 

ld   + lo       ld  = 47  for M20 an felus

   47   + 260   = 15.87 mm

  Providing 12 mm diameter bars

Spacing =  133 < 300 or 300 OK

Providing 12 mm bars @ 130 mm c/c from base to 4.6 m and Providing 12 mm bars                @ 200 mm c/c from 4.6 m up to top of wall.

 

(b) Area of distribution steel = b D= 1000 300 = 360 mm2

Assuming 8 mm bar

Spacing = =139.63             5d or 450 mm

Providing 8 mm @ 130 mm c/c

 

(iv) Check for shear

v  =  = = 0.59 N/mm2

Pt% =  =  = 0.33

Page 7.3 table -19

 

Pt %

c

0.25

0.36

0.5

0.48

 

c  = 0.36 + (0.33 – 0.25)

c = 0.39 N/m v > c

 

Design of shear reinforcement is required.

Design shear force = Vus

Vus   = Vu c bd = 153 103 – 0.39 1000   260

=       51.6 103 N

Sv  = 

Assume 8 mm 5 legged stirrups

(1) Sv =  = 457.2 mm

(2) Sv =  =  = 226.85

(3) Sv = 0.75dor 300 mm = 0.75 260 or 300 mm = 195 mm

 

Taking least of the three

= 195 mm 190 mm

Providing 8mm stirrups @ 190 mm c/c

 

Final provision: 

Corel_Symbol(1) Main – 12 = mm@ 130 mm c/c up to 4.6 m from base.

Corel_Symbol5   

 

Fig.  4.57: Pressure distribution

 

= 12 mm   @ 260 mm c/c 4.6 to top of wall

 

Corel_Symbol(2) Distribution = 8 mm  @ 130 mm c/c

Corel_Symbol(3) stirrups   = 8mm  5 sagged stirrups @ 190mm c/c

(4) Design of toe slab

(5) Design of toe slab

 

Designing as cantilever fixed at the face of vertical wall.

 

6From similar property

= 

y2  = 49.43

Total ordinate = y1 + y2 = 91.55 + 49.43 = 140.98

 

Upward pressure:

 

Resultant pressure

(1) At A = 158.49 – 12.5 = 145.99 kN/m2

(2) At B = 140.98 – 12.5 = 128.48 kN/m2

 

Shear force = Area of triangle + Area of rectangle

=  (1.7) (145.99 – 128.48) + 1.7 128.48

= 233.29 kN                                                         Fig.4.58: Resultant

Pressure diagram

 

Factored S.F. = 1.5 233.39 = 349.95 kN

B. M. =  (Area of rectangle C.G. Distance) + (Area of triangle C.G. Distance)             

M = 1.7 128.48 + (1.7) (145.99 – 128)  1.7 = 202.52 kN-m

Mu = 202.52 1.5 = 303.78 kN-m

 

Check for depth:

 

Max BM = Mulim

303.78  106 = 0.138 bd2 fck

303.78 106   = 0.138 1000 d2 20 

d     = 331.76 mm

D = 331.76 + 40 = 371.76 mm

 

<Dassumed<  500 mm

 

Providing D    = 500 mm And   d    = 460 mm

 

Area of steel:

 

Ast = 

Bd =  1000 460 

Ast = 2012.74 mm2 Ld   + lo

47  + 460   28.25

Assuming 20 mm Corel_Symbol bars

Spacing =  = 156.08

 150 mm     3d or 300 mm

 

Corel_SymbolProviding 16 nos. 20 mm bars @ 150 mm c/c.

Area of Distribution steel  bD …(1)

=  1000  500 = 600 m2

Corel_SymbolAssuming 8mm  bars

Spacing    =  = 83.77

 

Corel_SymbolProviding 8mm    @ 80mm c/c

 

Check for shear      From IS page 73 table 19.

Pt %

Cc

0.25

0.36

0.5

0.48

v =  =  = 0.76 N/mm2

Pt % =  =  = 0.455

 

c = 0.36 +  (0.455 – 0.25)  = 0.458 N/mm2= c

Design of shear reinforcement is necessary.

 

Design of shear reinforcement:

 

Vus = Vuc bd = 349.95 103 – 0.458 1000 460

= 139.27 103 N   

 

Corel_SymbolAssuming 8 mm 5 legged stirrups

7(1) =   = 299.71 300 mm

(2) Sv =  =

= 226.85 mm

(3) Sv = 0.75 d or 300 mm = 0.75 460 or 300

= 300 mm

Taking least value = 226 mm

Spacing = 220 mm

 

(6) Design of heel slab:

It is a continuous slab spanning between counter forts.  ...Ans.

Fig.4.59 Pressuredistribution

From similar

= 

8y4 = 46.34

Total  =  y3 + y4 = 91.55 + 46.34  = 137.89                         

 

Self weight = 0.5 25 = 12.5

Weight of soil = 9.2 16 = 147.2

Resultant at left edge = 137.89 – 12.5 – 147.2 

=   – 21.81 kN/m2

At right edge   = 91.55 – 12.5 – 147.2 

= – 68.15  kN/m2

 

Taking maximum value,

w2 = 68.15 kN/m2

Maximum SF,   V = 0.6  w2l  = 0.6 68.15 3.5

= 143.115 kN

 

Factored SF = 143.1151.5 = 214.67 kN                               Fig.4.60: Base pressure
    

Check for depth:

Maximum BM  =  

M =  = 69.57 kN-m

Factored BM, Mu  =  1.5 69.57   = 104.35  kN-m  

Mu =  Mu(lim) 106 104.35 = 0.138 fck bd2

104.35 106 = 0.138 20 1000 d2 

d =  194.44 < dassumed.

Providing D = 500 mm d = 460 mm

Area of steel:

Ast =  bd

= 1000 460 =647.53 mm2

Ld   + l0

For  M20 and  Fe 415 =Ld  =  47

L0 = d  = 460 mm  47   + 460

  20.12 mm

Assuming 12 mm bars  Spacing =  = 174.66 < 3d or  300 mm

 

   Providing 12 mm @ 170 mm c/c

 

Distribution steel:

 

Ast =  b D  = 1000 500 = 600 mm2

Assuming 8 mm Corel_Symbol bars

Spacing  = = 130  

Corel_Symbol   Providing 8 mm  @ 130 mm c/c 

 

Check for shear reinforcement:

 

v =  =  = 0.466 N/mm2

Pt %  =  =  = 0.14

c = 0.28 N/m2       for slab k = 1,  kc  =  0.28

v = c

Design of shear reinforcement is required.

 

Design of shear reinforcement:

 

Vus  = Vuc bd = 214.67 103 – 0.28 1000 460  = 85.87 103 N

Assuming 8 mm 5 legged stirrups.

(i) sv =   =  = 446.98 mm

(ii) sv =  = = 226.85 mm

(iii) sv =  0.75 d  or  300  = 0.75 460 or 300  = 345 or  300

 

Taking least value = 226.85 220 m,

Providing 8 mm   5 legged stirrups @ 220 mm c/c

 

Final provisions:

 

Corel_Symbol1. Main steel = 12 mm bars @ 170 mm c/c

Corel_Symbol2. Distribution steel = 10 mm bars @ 130 mm c/c    

Corel_Symbol3. Stirrups = 8 mm 5 legged stirrups @ 220 mm c/c    

 

(7) Design of counter fort: 

 

9tan   = =63.93  

= 90 – 63.93 = 26.07

 

Sin  = 

Sin  63.93 4.8 =  D

D     = 4.31

Assuming   D = 4400 mm 

Assuming    cover  =  100 mm     

    d =  4400 – 100 = 4300                           

10

Load transferred by vertical wall

= horizontal pressure spacing of counter fort

= Ka W H1l  

=  0.33 16 9.2 3.5  = 170.01 kN/m

SF =  =  = 782.07 kN            Fig.4.61: Geometry of

Retaining wall

 

Factored SF = 1.5 782.07 = 1173.11 kN

BM =  =   = 2398.27 kN.m

Factored BM  = Mu  = 1.5 2398.27 = 3597.41 kN-m

 

For varying depth section.

Vu (design) =  Vu – 

= 1173.11 103 –  = 763.8 103 N

Check for depth:

 

Mu =  Mulim 

3597.41    106 = 0.138 fck  bd2

3597.41    106 = 0.138 20 400 d2 

d = 1805.13 < dassumed   safe

 

Providing     D =  4400 mm  and       d = 4300

 

Area of steel:

Ast =  bd

= 4300400

=2387.05 mm2

 

Ld   + L0

 

For M20 and  Fe415 = Ld  =  47

10 L0 =   d = 4300 mm

47    + 4300

  191.69  

Provide = 20 mm bars

Number of bars   =   = 7.59 8 bars         

Fig.4.62: Reinforcement

 

The tension between counter fort and vertical wall

(Design of horizontal stirrups)

For 1 m height of counter fort

Tension  = T  =  Pressure on vertical wall   Spacing l

= KawHl1  = 0.33 16 9.2 3.5 1 = 170.01 kN

Tu = 1.5 170.01 = 255.02 kN

 

Assuming spacing of stirrups = 200 mm c/c

For 1 m height number of stirrups = 5

Asv = =  = 141.27 mm2

 

(b) Check for shear for horizontal stirrups

v = == 0.44 N/m2

Pt % = =   = 0.15

 

From table 19, Pg- 73

c =  0.28 N/m2  v > c

 

Design of shear reinforcement is required.

Vus  = Vu design – c bd

=763.8 103 – 0.28 400 4300 = 282.2 103 N

 

Sv =  

200 = 

Asv = 36.35

Total Asv = 141.27 + 36.35 = 177.62 mm2

Assuming 2 legged stirrups

2 2 = 177.62 

 = 10.63

Providing 12 mm 2 legged stirrups @  200 mm c/c  from base  to  = 4.6 m

And @ 400 mm c/c from 4.6 m upto top

 

Direct tension between heel stab and counter fort  (vertical stirrups)

T = Maximum pressure in heel slab Spacing of counter fort

T =  90.64 3.5 1 = 317.24 kN

Tu = 1.5 317.24 = 475.86 kN

Number of stirrups  = 

Assuming 10 mm 2 legged stirrups

Number of stirrups  = 

= 8.39 9 m                                                           

11Spacing  =   = 111.11 mm 110 mm  

 


Index
Notes
Highlighted
Underlined
:
Browse by Topics
:
Notes
Highlighted
Underlined