Unit II
Mean value theorems
Q1) Verify Rolle’s theorem for the function f(x) = x(x+3) in interval [-3, 0].
A1) First we will differentiate the given function with respect to x, we get
f’(x) = (x²+3x) + (2x + 3)
=
This shows that f’(x) exists for all x, therefore f(x) is continuous for all x.
Now, f(-3) = 0 and f(0) = 0 , so that f(-3) = f(0).
Here f(x) satisfies all the conditions of Rolle’s theorem,
Then,
f’(x) = 0 , which gives
= 0
We get,
X = 3 and x = -2
Here we can see that clearly -3<-2<0 , therefore there exists -2 ∈ (-3,0) such that
f’(-2) = 0
That means the Rolle’s theorem is true for the given function.
Q2) Verify Rolle’s theorem for the given functions below-
1. f(x) = x³ - 6x²+11x-6 in the interval [1,3]
2. f(x) = x²-4x+8 in the interval [1,3]
A2) (1) As we know that every polynomial is continuous and differentiable for all points, so that the given function is continuous and differentiable in the interval [1,3]
Also, f(1) = f(3) = 0
Now we find f’(x) = 0
3x² - 12x +11 = 0
We get, x = 2+ and 2 -
Hence both of them lie in (1,3).
Hence the theorem holds good for the given function in interval [1,3]
(2) As we know that every polynomial is continuous and differentiable for all points, so that the given function is continuous and differentiable in the interval [1,3]
Also, f(1) = 1 -4 +8 = 5 and f(3) = 9 – 12 + 8 = 5
Hence f(1) = f(3)
Now the first derivative of the function,
f’(x) = 0
2x – 4 = 0 , gives
X = 2
We can see that 1<2<3, hence there exists 2 between 1 and 3. And f’(2) = 0.
This means that the Rolle’s theorem holds good for the given function and given interval.
Q3) Verify the Rolle’s theorem for sin x in the interval []
A3) Suppose f(x) = sin x
We know that sin x is continuous for all x.
Now, f’(x) = cos x exists for all x in () and
f(0
f(0
Thus f(x) satisfies all the conditions of Rolle’s theorem.
Now,
f’(x) = 0 that gives, cos x = 0
x =
Here we notice that both intervals lie in (.
There exists, c =
So that, f’(c) = 0
The Rolle’s theorem has been verified.
Q4) Verify Lagrange’s mean value theorem for f(x) = (x-1)(x-2)(x-3) in [0,4].
A4) polynomial is continuous in [0,4] and differentiable in (0,4).
f(x) = (x-1)(x-2)(x-3)
f(x) = x-6x²+11x-6
Now at x = 0, we get
f(0) = -6 and
At x = 4, we get.
f(4) = 6
Diff. The function w.r.t.x , we get
f’(x) = 3x²-6x+11
Suppose x = c, we get
f’(c) = 3c²-6c+11
By Lagrange’s mean value theorem,
f’(c) = = = = 3
Now we get,
3c²-6c+11 = 3
3c²-6c+8 = 0
On solving the quadratic equation, we get
C = 2
Here we see that the value of c lies between 0 and 4
Therefore, the given function is verified.
Q5) Verify Lagrange’s mean value theorem for f(x) = log xin [1,e].
A5) We already know that the function which is log x is continuous for all x>0.
So that this is the continuous function In [1,e]
Now,
f’(x) = 1/x
Which is exists for all x in (1,e)
So that f(x) is differentiable in (1,e).
By Lagrange’s mean value theorem, we get
f’(c) = , let x = c,
Then ,
f’(c) =
We get,
c = e-1
e-1 will always lies between 1 and e .
Hence the function is verified by Lagrange’s mean value theorem
Q6) Verify Cauchy’s mean value theorem for the function f(x) = sin x and g(x) = cosx in [ 0, π/2]
A6) It is given the,
f(x) = sin x and g(x) = cos x
Now,
f’(x) = cos x and g’(x) = - sin x
We know that both the functions are continuous in [ 0 , π/2] and differentiable in ( 0 , π/2 )
Also, g’(x) = -sin x ≠ 0 for all x ϵ( 0 , π/2 )
By Cauchy’s mean value theorem, we get
for some c: 0< c <
That means
which gives,
Cot c = 1
C =
Now we see that lies between 0 and
Q7) Verify Cauchy’s mean value theorem for the function f(x) = x⁴ and g(x) = x² in the interval [1,2]
A7) We are given, f(x) = x⁴ and g(x) = x
Derivative of these functions,
f’(x) = 4x³ and g’(x) = 2x
Put these values in Cauchy’s formula, we get
2c² =
c² =
c =
Now put the values of a = 1 and b = 2 ,we get
c = = = (approx)
Hence the Cauchy’s theorem is verified.
Q8) Express the polynomial in powers of (x-2).
A8) Here we have,
f(x) =
Differentiating the function w.r.t.x-
f’(x) =
f’’(x) = 12x + 14
f’’’(x) = 12
f’’’’(x)=0
Now using Taylor’s theorem-
+ ……. (1)
Here we have, a = 2,
Put x = 2 in the derivatives of f(x), we get-
f(2) =
f’(2) =
f’’(2) = 12(2)+14 = 38
f’’’(2) = 12 and f’’’’(2) = 0
Now put a = 2 and substitute the above values in equation (1), we get-
Q9) Expand sin x in powers of
A9) Let f(x) = sin x
Then,
=
By using Taylor’s theorem-
+ ……. (1)
Here f(x) = sin x and a = π/2
f’(x) = cosx, f’’(x) = - sin x, f’’’(x) = - cos x and so on.
Putting x = π/2, we get
f(x) = sin x = = 1
f’(x) = cos x = = 0
f’’(x) = -sin x = = -1
f’’’(x) = -cos x = = 0
From equation (1) put a = and substitute these values, we get-
+ …….
= ………………………..
Unit II
Mean value theorems
Q1) Verify Rolle’s theorem for the function f(x) = x(x+3) in interval [-3, 0].
A1) First we will differentiate the given function with respect to x, we get
f’(x) = (x²+3x) + (2x + 3)
=
This shows that f’(x) exists for all x, therefore f(x) is continuous for all x.
Now, f(-3) = 0 and f(0) = 0 , so that f(-3) = f(0).
Here f(x) satisfies all the conditions of Rolle’s theorem,
Then,
f’(x) = 0 , which gives
= 0
We get,
X = 3 and x = -2
Here we can see that clearly -3<-2<0 , therefore there exists -2 ∈ (-3,0) such that
f’(-2) = 0
That means the Rolle’s theorem is true for the given function.
Q2) Verify Rolle’s theorem for the given functions below-
1. f(x) = x³ - 6x²+11x-6 in the interval [1,3]
2. f(x) = x²-4x+8 in the interval [1,3]
A2) (1) As we know that every polynomial is continuous and differentiable for all points, so that the given function is continuous and differentiable in the interval [1,3]
Also, f(1) = f(3) = 0
Now we find f’(x) = 0
3x² - 12x +11 = 0
We get, x = 2+ and 2 -
Hence both of them lie in (1,3).
Hence the theorem holds good for the given function in interval [1,3]
(2) As we know that every polynomial is continuous and differentiable for all points, so that the given function is continuous and differentiable in the interval [1,3]
Also, f(1) = 1 -4 +8 = 5 and f(3) = 9 – 12 + 8 = 5
Hence f(1) = f(3)
Now the first derivative of the function,
f’(x) = 0
2x – 4 = 0 , gives
X = 2
We can see that 1<2<3, hence there exists 2 between 1 and 3. And f’(2) = 0.
This means that the Rolle’s theorem holds good for the given function and given interval.
Q3) Verify the Rolle’s theorem for sin x in the interval []
A3) Suppose f(x) = sin x
We know that sin x is continuous for all x.
Now, f’(x) = cos x exists for all x in () and
f(0
f(0
Thus f(x) satisfies all the conditions of Rolle’s theorem.
Now,
f’(x) = 0 that gives, cos x = 0
x =
Here we notice that both intervals lie in (.
There exists, c =
So that, f’(c) = 0
The Rolle’s theorem has been verified.
Q4) Verify Lagrange’s mean value theorem for f(x) = (x-1)(x-2)(x-3) in [0,4].
A4) polynomial is continuous in [0,4] and differentiable in (0,4).
f(x) = (x-1)(x-2)(x-3)
f(x) = x-6x²+11x-6
Now at x = 0, we get
f(0) = -6 and
At x = 4, we get.
f(4) = 6
Diff. The function w.r.t.x , we get
f’(x) = 3x²-6x+11
Suppose x = c, we get
f’(c) = 3c²-6c+11
By Lagrange’s mean value theorem,
f’(c) = = = = 3
Now we get,
3c²-6c+11 = 3
3c²-6c+8 = 0
On solving the quadratic equation, we get
C = 2
Here we see that the value of c lies between 0 and 4
Therefore, the given function is verified.
Q5) Verify Lagrange’s mean value theorem for f(x) = log xin [1,e].
A5) We already know that the function which is log x is continuous for all x>0.
So that this is the continuous function In [1,e]
Now,
f’(x) = 1/x
Which is exists for all x in (1,e)
So that f(x) is differentiable in (1,e).
By Lagrange’s mean value theorem, we get
f’(c) = , let x = c,
Then ,
f’(c) =
We get,
c = e-1
e-1 will always lies between 1 and e .
Hence the function is verified by Lagrange’s mean value theorem
Q6) Verify Cauchy’s mean value theorem for the function f(x) = sin x and g(x) = cosx in [ 0, π/2]
A6) It is given the,
f(x) = sin x and g(x) = cos x
Now,
f’(x) = cos x and g’(x) = - sin x
We know that both the functions are continuous in [ 0 , π/2] and differentiable in ( 0 , π/2 )
Also, g’(x) = -sin x ≠ 0 for all x ϵ( 0 , π/2 )
By Cauchy’s mean value theorem, we get
for some c: 0< c <
That means
which gives,
Cot c = 1
C =
Now we see that lies between 0 and
Q7) Verify Cauchy’s mean value theorem for the function f(x) = x⁴ and g(x) = x² in the interval [1,2]
A7) We are given, f(x) = x⁴ and g(x) = x
Derivative of these functions,
f’(x) = 4x³ and g’(x) = 2x
Put these values in Cauchy’s formula, we get
2c² =
c² =
c =
Now put the values of a = 1 and b = 2 ,we get
c = = = (approx)
Hence the Cauchy’s theorem is verified.
Q8) Express the polynomial in powers of (x-2).
A8) Here we have,
f(x) =
Differentiating the function w.r.t.x-
f’(x) =
f’’(x) = 12x + 14
f’’’(x) = 12
f’’’’(x)=0
Now using Taylor’s theorem-
+ ……. (1)
Here we have, a = 2,
Put x = 2 in the derivatives of f(x), we get-
f(2) =
f’(2) =
f’’(2) = 12(2)+14 = 38
f’’’(2) = 12 and f’’’’(2) = 0
Now put a = 2 and substitute the above values in equation (1), we get-
Q9) Expand sin x in powers of
A9) Let f(x) = sin x
Then,
=
By using Taylor’s theorem-
+ ……. (1)
Here f(x) = sin x and a = π/2
f’(x) = cosx, f’’(x) = - sin x, f’’’(x) = - cos x and so on.
Putting x = π/2, we get
f(x) = sin x = = 1
f’(x) = cos x = = 0
f’’(x) = -sin x = = -1
f’’’(x) = -cos x = = 0
From equation (1) put a = and substitute these values, we get-
+ …….
= ………………………..