Back to Study material
SA

Unit-2

Analysis of Beams and Frames

 

Q1) Explain the condition when fixed beam carrying udl throughout.

 A1) Fixed beam carrying udl throughout:

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\6.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\7.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\8.JPG

Area & (A) @B

For fig (i) ……………..

(-)      (L) …………..(i)

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\9.JPG

(A) @B = 

= (-)     +  

=    (-)  ……………. (II)

Fig (2)

A =       (L)  =

AB =  =

As per principle (1)

Total area =0

+  =0

  = ……….(I)

As per principle (2)

@B =0

  + =0

( ……………. (2)

From (1),

MB =   = MA put in (2)

2MA + MA +

MA =

MA = 

MB = 

      Fixed beam carrying udl end moments are 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\10.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\11.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\12.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\13.JPG

 

 

Q2) Explain the condition fixed beam with point load.

 A2) Fixed beam with point load.

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\14.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\15.JPG

Area &@B   for free BMD

A =    (L) 

A =

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\16.JPG

 

@B   =   =  

(2) As per principle (1)

Total Area =0

(L) + =0

MA + MB = ……….. (1)

As per principle (2)

@B   = 0

(-) (2MA+2MB) +  =0

 

2MA+2MB =  (L + b) ………… (2)

From (1)

MB = MA   (Put in eqnc2)

2MA +    (L +b)

MA =

           =

MA =

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\17.JPG

Special cases

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\18.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\19.JPG  

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\20.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\21.JPG

 

Q3) Explain the condition when fixed beam carrying partial udl.

A3) Fixed beam carrying partial udl

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\22.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\23.JPG

= 

MA = 

MB =

=

=

=

=

MB=

Special case:

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\24.JPG

MA =

           =

    MB = 

= 

MB = 

 

 

Q4)  Explain the condition of fixed beam with partial UVL.

 A4) Fixed beam with partial uvl

 Diagram:

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\25.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\26.JPG

 

MB =

 

     = w - 

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\28.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\27.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\29.JPG

 

 

Q5)  Explain the condition of fixed beam of sinking of support.

 A5) Fixed beam with sinking of support (A)

 

        

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\31.JPG

As per principle   (1)

 

Area of     M     dia. = 0

                  EI

 

(-)      MA + MB   (L)   = 0

              2 EI

         MA + MB = 0

         MA = - MB     (1)

As per principle     (2)

(AX)  @ B =0

tBA = (AX) @ B =   

(-)     L2 (2MA + MB) = (-) 

        6EI

3M – LM2 = ………..From (1)

 

Final fig.

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\33.JPG

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\32.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\34.JPG

 

 

Q6) Explain the condition of fixed beam with rotational fielding.

 A6) Fixed beam with rotational fielding

 

Diagram

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\35.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\31.JPG

i) Area M dia. = B

                      EI

 

(-1)       1     MA + MB (L)         = B

             EI           2

 

MA + MB= (-) 2EI (B)       (1)

                           L

 

Area     M     xXB = tBA = 0

             E1

 

  (-)    L2       2MA + MB   = 0

           6EI

2MA + MB   = 0     (2)

 

From (1)

…………..

2MA = 2EI (B) - MA = 0

                L

  MA = 2EI    (B)

                 L

 

MB = 4 EI    (B)

             L

 

For rotation B anticlockwise

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\36.JPG

(Both end moment & rotation clockwise)

 

Q7) Explain the condition of fixed beam with couple.

 A7) Fixed beam with couple

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\38.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\37.JPG

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\39.JPG

Area & (AX) (a) B

A1 =    1        mA + mB (L)

           EI              2

 

A2 =    1        1 x ax m   (a)

           EI       2                  L

 

=   ma2

               2LEI

 

A3 =     x b x (b)

 

=    -     mb2

            2 LEI

 

(A x) 1 (a) B =   (-)     L2 2mA + mB

                                   6 EI

 

(A x) 2 (a) B =   (-)    Ma2 b + 1 a

                                   2 LEI            3

 

 

(A x) 3 (a) B =   (-)    Mb2 2 b

                                   2 LEI     3

 

  = (-)   Mb3

                                  3 LEI

 

As per principle (1)

Total Area = 0

∑ A = 0

 

(-)   mA + mB (L)         +   ma2 - mb2   - 0

               2                            2L        2L

mA + mB (L) =   m (a2 – b2)

                  2    2L

mA+ mB = m (a-b)    (1)

                          L

 

(3) (Ax) (a)    B = 0

(-)   L2   (2 mA + mB) + ma2     b +     a - mb3          = 0

                   6                               2L                 3     3L

 

 2MA + MB= 6 (m)    a2b+a   -     b3

                                   L2         2L    3       3L

 

2MA + MB = M     3a2b + a3 – 2b3

                      L                                                                            (2)

From (1),

MB= M (a-b) - MA  put in (2)

         L

 

2MA + M (a-b) – MA = M       3a2b + a3 – 2b3

            L                        L3

 

  MA = M      3a2b + a3 – 2b3       -    M (a-b)

                L3                                        L

 

 

Multiply &divide by ………….

MA = M         3a2b + a3 – 2b3 -(a-b)    ( ………..)

          L3

 

MA = M      3a2b + a3 – 2b3 -(a-b)    ( ………..)

          L3

 

 = M       2a2b – b3 – ab2

                 L3

MA = MB (a – o)   (………….)

          L3

 

MA = MB    (2 a-b)

           L3

 

MB =   M (a-b) - MB (2a-b)

             L                L2

 

MB = (-) MQ (2b – a)

                L2

 

 

Q8) Explain the condition of couple at centre.

A8) Special case:

Couple at centre

B = 10mm (1)

E = 200 G pa

I = 8 x 106 mm4

EI = 1600 KN/M2

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\42.JPG

 

(1) FEM

 

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\43.JPG

MA1 = (-) MB1 = WL2 = 15 X 16 = 20 KNM

                              12             12

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\44.JPG

MA = MB 

 

Final  MA =?

  MB =?

 

MA = VB (4) – 1

  VA = 27

∑Fy = 0

VA /VA =

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\45.JPG

 

BMP

BMA= (-) 26 KNM

BMB = (-)19 KNM

BMC = 33 (2.2) – 26 – 15      (2.2)2

                                                     Z

  BMC = 10.3 KNM

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\46.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\47.JPG

 

(1)              FEM’S

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\48.JPG

 

MA1= (-) Mb (2a-b)

                   L2

                                 

 

= (-) 24 x 5 (1)                       

                     (8)2

 = (-) (1.875) KNM

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\49.JPG

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\50.JPG

 

MA1 =

=

MA2=

MA2=

MA2 = 44.92 KNM

MB2 = (-) 56.320 KNM

MA = MA1 + MA2

           = 1.875 + 44.92

MA = 43.045 KNM

  MB = - 7.875 – 56.32 = - 64.195 KNM

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\51.JPG

X1 =           y1                            (a)

              y1 + y2

 

∑F y =VA + VB – 18 3 =0

VA =17.98 x 18KN

VA = 18KN

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\52.JPG

BMD

 

 

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\54.JPGC:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\55.JPG

 

BMA = - 43.05 KNM

BMB = - 64.19 KNM

BMC(R) = 18 (3) – 43.05 = 10.95 KNM

BMC(R) = 10.95 + 24 = 34.95 KNM

BMF = 18 (4) – 43.05 + 24 -   18 = 43.95 KNM

                                                    2

C:\Users\TARUNA\Desktop\internship\january\20 jan 2020\UNIT 2 PART B\53.JPG

 

Q9) Explain moment area method in detail.

A9) Moment area method (Mohr’s Theorem):

Principle (I):

Angle between tangents drawn to elastic curve at any two points A & B is equal to area of M/EI diagram between A & B

Principle II:

Position of B on elastic curve with respect to tangent drawn at A is equal to moment of area of M/EI diagram between A & B about B.

D:\MY DOCUMENTS\internship\february\11 feb2020\89.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\90.JPG

As per principle 1:ϴ = Area (A)

Principle 2: t BA = (A) (xB)

 Area and CG

For rectangle

D:\MY DOCUMENTS\internship\february\11 feb2020\91.JPGD:\MY DOCUMENTS\internship\february\11 feb2020\92.JPG

For parabola (udl)

D:\MY DOCUMENTS\internship\february\11 feb2020\93.JPG

For cubic parabola (UVL Load)

D:\MY DOCUMENTS\internship\february\11 feb2020\94.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\95.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\96.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\97.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\98.JPG

 

Q10) Find out slope and deflection at free end of cantilever.

 A10) Derive slope & Deflection at free end of cantilever

D:\MY DOCUMENTS\internship\february\11 feb2020\99.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\100.JPG
Solution:

ϴB = Area of (M/EL) AB

     = ½ x L (PL/EI)

ϴB = PL2/ZEI (    )

t BA = ΔB = (Area)AB x xB

              = (PL2/2EI) (2/3L)

ΔB = PL3/3EI (   )

 

Q11)  Find out slope and deflection of given beam.

A11)

D:\MY DOCUMENTS\internship\february\11 feb2020\101.JPG

Find:  ϴC, ΔC?

Solution:

BMD:

BM at c = 0

BMB = (-) 10 x 2 x 1

          = (-) 20 KNM

BMA = (-) 30 x 3 – 10 x 2(4)

          = (-) 170 KNM

D:\MY DOCUMENTS\internship\february\11 feb2020\102.JPG

A1 = 30/EI

A2 = ½ x 75/EI x 3 = 112.5/EI

A3 = 1/3 x 2 x 20 x 20/EI = 13.33/EI

Elastic curve

D:\MY DOCUMENTS\internship\february\11 feb2020\103.JPG

 Slope & Deflection:

ϴC = Area of (M/EI) dia. |CA

ϴC = A1 + A2 + A3 = 1/EI {30 + 112.5 +13.33}

ϴC = 155.83/EI (      )

ΔC = t CA = (A1x1 + A2x2 + A3x3) C

= 1/EI (30 x (3.5) + 112.5(2 + 2/3 x 3) + 13.33 (3/4 x 2))

ΔC = 575/EI (     )

 

Q12) Find out ϴC& ΔC .

 

D:\MY DOCUMENTS\internship\february\11 feb2020\104.JPG

Find:  ϴC&ΔC

A12)

E = 2 x 105 M Pa

I = 250 x 3503/12

EI = 1.78 x 105 KNm2

 BMA = -50 x 4 x (2 + 2)

            = - 800 KNM

BMB = -50 x 4 x 2

         = -400 KNM

BMC = 0

 

BMDD:\MY DOCUMENTS\internship\february\11 feb2020\105.JPG

 M/EI Dia.:

A1 = 100 x 2/EI = 200/EI

A2 = 1/ 2x 100/EI x 2 = 100/EI

A3 = 1/3 x 200/EI x 4 = 266.67/EI

 Elastic curve

D:\MY DOCUMENTS\internship\february\11 feb2020\103.JPG

 ϴC = Area of (M/EI) AC

      = A1 + A2 + A3

      = 200 + 100 + 266.67/EI

      = 566.67/EI

ϴC = 3.17 x 10-3 rad. (      )

ΔC = t CA = {Area}A-C x xC

      = (A1x1 + A2x2 + A3x3)@C

      = 200/EI x (4+1) + 100/EI x (4 + 2/3 x 2) + 266.67/EI(3/4 x 4)

      = 1000/EI + 533.33/EI + 800.01/EI

      = 2333.34/EI

      = 13.1 x 10-3 m

ΔC = 13.1 mm (    )

 

Q13)   Find ϴC&ΔC

D:\MY DOCUMENTS\internship\february\11 feb2020\106.JPG

A13)

  BMDD:\MY DOCUMENTS\internship\february\11 feb2020\107.JPG

A1 = M/2EI x 3 = 1.5M/EI

A2 = M/EI x 3 = 3M/EI

ϴC = Area (M/EI) A-C

      =A1 + A2

ϴC = 4.5M/EI

ΔC = t CA= (A1x1 + A2x2)@c 

      = 1.5M/EI x (3+1.5) + 3M/EI (1.5)

ΔC = 11.25M/EI (   )

 

Q14) Find: ΔC  

 Find: ΔC  

D:\MY DOCUMENTS\internship\february\11 feb2020\108.JPG

A14)

 BMA = M

BMB = 0

 BMD/‘M/EI Dia.

D:\MY DOCUMENTS\internship\february\11 feb2020\109.JPG

 Elastic Curve

D:\MY DOCUMENTS\internship\february\11 feb2020\110.JPG

 Slope & Deflection

t AB = {Area}A-B x(xA)

       = 1 / 2 x M/EI x L {1/3L}

t AB = ML2/6EI

t BA = {Area}A-B x(xB)

       = 1 / 2 x M/EI x L {2/3 L}

t BA = ML2/3EI

ϴA ≈ tan (ϴA) = t BA/L = ML/3EI  (    )

ϴB ≈ tan (ϴB) = t AB/L = ML/6EI (     )

t AB/L = C1C3/L/2

C1C3 = t AB/2 = ML2/12EI

t CB = Area C-B x (xc)

      = 1 / 2 x M/2EI x L/2 x {1/3 x L/2}

t CB  = ML2/48EI

ΔC     = C1 C2

        = C1C3 – C2C3

        = ML2/12EI – ML2/48EI

ΔC   = ML2/16EI (      )

 

Q15) Find: ϴC, ΔC=?

 Find: ϴC, ΔC=?

D:\MY DOCUMENTS\internship\february\11 feb2020\111.JPG

A15)

BMA = BMB = 0

BMC = PL/4

          = 40 x 4/4

          = 40 KNM

D:\MY DOCUMENTS\internship\february\11 feb2020\112.JPG

D:\MY DOCUMENTS\internship\february\11 feb2020\113.JPG

A1 = 1 / 2 x 2 x 40/EI = 40/EI

A2 = 1 / 2 x 2 x 20/EI = 20/EI

 Elastic curve

D:\MY DOCUMENTS\internship\february\11 feb2020\114.JPG

Slope & Deflection

t AB = (Area)A-B x xA

       (A1x1 + A2x2)@A

        = 40/EI x (2/3 x 2) + 20/EI (2 + 1/3(2))

        = 53.33/EI + 53.33/EI

t AB  = 106.67/EI

t BA =  {Area}AB x xB

      = (A1x1 + A2x2)@B

      = 1/EI {40 x (2 + 1/32) + 20(2/3 x 2)}

    = 133.33/EI

ϴA ≈ tan (ϴA) = t BA/L = 133.33/4EI = 33.33/EI (      )

ϴB ≈ tan (ϴB) = tan AB/L = 106.67/4EI = 26.67/EI (      )

For ΔC (C1, C2)

t AB/4 = C1C3/2

C1C3 = t AB/2 = 106.67/2EI = 53.33/EI

t CB = {Area}CB x  (xC)

       = 20/EI x (1/3 x 2) = 13.33/EI

ΔC = C1C3 – C2C3

      = 53.33 – 13.33

ΔC = 39.99/EI

ΔC = 40/EI (      )

 

Q16) Find: ϴA& ΔC?

D:\MY DOCUMENTS\internship\february\11 feb2020\115.JPG

A16)

∑MA = 0

-50 x 1 + VB x 4 + 20 = 4VB = 30

VB = 7.5 KN

VA + VB = 50

VA = 42.5KN

BMA = 0

BMB = 0

BMC = 42.5 x 1 = 42.5 KNM

BMDL = 42.5 x 3 – 50 x 2 = 27.5 KNM

BMDR = 7.5 x (1) = 7.5 KNM

D:\MY DOCUMENTS\internship\february\11 feb2020\116.JPGD:\MY DOCUMENTS\internship\february\11 feb2020\117.JPG

A1 = 1 / 2 x 1 x 42.5/EI = 21.25/EI

A2 = 1 / 2 x 2 x 15/EI = 15/EI

A3 = 27.5/EI x 2 = 55/EI

A4 = 7.5/2EI x 1 = 3.75/EI

Elastic curve:

D:\MY DOCUMENTS\internship\february\11 feb2020\118.JPG

Slope &Deflection:

t AB = {Area}A-B x xA

       = (A1x1 + A2x2 + A3x3 + A4x4)@A

      = 21.25/EI x [2/3 x (1)] + 15/EI(1 + 1/3 x 2) + 55/EI(1 + 1)+ 3.75/EI(3 + 1/3 x 1)

      = 14.16/EI + 25/EI + 110/EI + 12.5/EI

     = 161.66/EI

t BA = Area(B-A) x xB

       = {A1x1 + A2x2 + A3x3 + A4x4}@B

       = 1/EI {21.25(3 + 1/3 x 1) + 15(1 + 2/3 x 2) + 55(2) + 3.75 x 2/3}

       = 218.33/EI

ϴA ≈ tan (ϴA) = t BA/4

ϴA = 218.33/4EI = 54.58/EI (      )

ϴB ≈ tan (ϴB) = t AB/4 = 161.66/4EI = 40.41/EI (     )

To find ΔC

t BA/4 = C1C3/1

C1C3 = 54.58/EI

C1C2 = t CA = Area CA x xC

          = A1xC

         = 21.25/EI (1/3 x 1)

         = 7.08/EI

ΔC = C1C3 C1C2

      = 54.58/EI – 7.08/EI

      = 47.5/EI (     )

 

Q17)  Explain slope and deflection method in detail.

A17)

  •  Slope Deflection method
  • Slope deflection methods: means it is a method or tool by which we find out how a structure or a member of a structure behaves when subjected to certain excitation.
    In other words finding out internal forces (axial force, shear force, moment), stress, strain, deflection, etc in a structure under applied load conditions.

    Fixed End Moments: Standard Cases Fixed End Moments

    Standard Cases

    1.

    2.

    3.

     

    4.

     

    5.

     

    Q18) Analyze the continuous beam ABCD by S.D. method draw BMD

    A18) Modify Diagram

     

    Apply S.D. equation

    Joint equilibrium equation

    Joint at B