x(n) = δ(n-k) --------------------------------------------(2) Then the output y(n) = T [ δ(n-k)] -----------------------------------------------------(3) Figure . Step response The step response of a discrete-time LTI system is the convolution of the unit step with the impulse response- s[n]=u[n]*h[n]. -------------------(1) commutative property of convolution, s[n]=h[n]*u[n]. ----------------------------------------(2) That means s[n] is the response to the input h[n] of a discrete-time LTI system with unit impulse response u[n].
Figure . LTI discrete time
s[n] = u[n-k] ------------------------------------(1) Since u [n- k]< 0 is for n- k< 0, i.e. k> n and 1 for n -k> 0, i.e. k≤ n. Therefore, -----------------------------------------------(2) That is the step response of the discrete LTI system is the running sum of its impulse response. s[n-1] = s[n] – s[n-1] = - h[n] = s[n] – s[n-1] From here h[n] can be recovered from s[n] , the impulse response of discrete-time LTI system is the first difference of its step response. For continuous time system The unit step response is the running integral of its impulse response. s(t) = ) dτ The unit impulse response is the first derivative of the unit step response: - h(t) = ds(t)/dt = s’(t)
|
x(n) y(n) = T[x(n)]
Figure . I/O relation
|
= a11 x1(t) + a12 x2(t) + ……….+ a1n xn(t) + b11 u1(t) + b12 u2(t) +….+ b1m um(t) -----------------------------------(1) = a21 x1(t) + a22 x2(t) + ……….+ a2n xn(t) + b21 u1(t) + b22 u2(t) +….+ b2m um(t) -----------------------------------(2) ……. = an1 x1(t) + an2 x2(t) + ……….+ ann xn(t) + bn1 u1(t) + bn2 u2(t) +….+ bnm um(t) -----------------------------------(3) = A x(t) + B u(t) ------ State Equation Similarly the output variables can be written as a linear combination of system states and inputs that is y1(t) = c11 x1(t) + c12 x2(t) +……..+ c1n xn(t) +d11 u1(t) + d12 u2(t) + …+ d1mum(t) ---------------------------------------(1) y2(t) = c21 x1(t) + c22 x2(t) +……..+ c2n xn(t) +d21 u1(t) + d22 u2(t) + …+ d2mum(t)--------------------------------------------(2) ------ yp(t)= cp1x1(t) + cp2x2(t) + ………..+ cpnxn(t) + dp1u1(t) + dp2u2(t) +….+dpmum(t) where coeffecients cij = i=1,2,p; j=1,2,p: k=1,2,m are constants. In vector form y(t)= Cx(t) + D u(t) ---------Output Equation. |