UNIT-1
Matrices
Question-1: Find the rank of a matrix A by echelon form.
A =
Sol. Convert the matrix A into echelon form,
A =
Apply
A =
Apply , we get
A =
Apply , we get
A =
Apply ,
A =
Apply ,
A =
Therefore the rank of the matrix will be 2.
Question-2: Find the rank of the following matrices by echelon form?
Let A =
Applying
A
Applying
A
Applying
A
Applying
A
It is clear that minor of order 3 vanishes but minor of order 2 exists as
Hence rank of a given matrix A is 2 denoted by
2.
Let A =
Applying
Applying
Applying
The minor of order 3 vanishes but minor of order 2 non zero as
Hence the rank of matrix A is 2 denoted by
3.
Let A =
Apply
Apply
Apply
It is clear that the minor of order 3 vanishes where as the minor of order 2 is non zero as
Hence the rank of given matrix is 2 i.e.
Question-3: Reduce the matrix A to its normal form and find rank as well.
Sol. We have,
We will apply elementary row operation,
We get,
Now apply column transformation,
We get,
Apply
, we get,
Apply and
Apply
Apply and
Apply and
As we can see this is required normal form of matrix A.
Therefore the rank of matrix A is 3.
Question-4: Find the solution of the following homogeneous system of linear equations,
Sol. The given system of linear equations can be written in the form of matrix as follows,
Apply the elementary row transformation,
, we get,
, we get
Here r(A) = 4, so that it has trivial solution,
Question-5: : Check the consistency and find the values of x , y and z of the following system of linear equations.
2x + 3y + 4z = 11
X + 5y + 7z = 15
3x + 11y + 13z = 25
Sol. Re-write the system of equations in augmented matrix form.
C = [A,B]
That will be,
Apply
Now apply ,
We get,
~~
Here rank of A = 3
And rank of C = 3, so that the system of equations is consistent,
So that we can can solve the equations as below,
That gives,
x + 5y + 7z = 15 ……………..(1)
y + 10z/7 = 19/7 ………………(2)
4z/7 = 16/7 ………………….(3)
From eq. (3)
z = 4,
From 2,
From eq.(1), we get
x + 5(-3) + 7(4) = 15
That gives,
x = 2
Therefore the values of x , y , z are 2 , -3 , 4 respectively.
Question-6: solve the following system of linear equations by using Guass seidel method-
6x + y + z = 105
4x + 8y + 3z = 155
5x + 4y - 10z = 65
Sol. The above equations can be written as,
………………(1)
………………………(2)
………………………..(3)
Now put z = y = 0 in first eq.
We get
x = 35/2
Put x = 35/2 and z = 0 in eq. (2)
We have,
Put the values of x and y in eq. 3
Again start from eq.(1)
By putting the values of y and z
y = 85/8 and z = 13/2
We get
The process can be showed in the table format as below
At the fourth iteration , we get the values of x = 14.98 , y = 9.98 , z = 4.98
Which are approximately equal to the actual values,
As x = 15 , y = 10 and y = 5 ( which are the actual values)
Question-7: : check whether the following matrix A is symmetric or not?
A =
Sol. As we know that if the transpose of the given matrix is same as the matrix itself then the matrix is called symmetric matrix.
So that, first we will find its transpose,
Transpose of matrix A ,
Here,
A =
So that, the matrix A is symmetric.
Question-8: Are the vectors , , linearly dependent. If so, express x1 as a linear combination of the others.
Solution:
Consider a vector equation,
i.e.
Which can be written in matrix form as,
Here & no. Of unknown 3. Hence the system has infinite solutions. Now rewrite the questions as,
Put
and
Thus
i.e.
i.e.
Since F11k2, k3 not all zero. Hence are linearly dependent.
Question-9: Determine the Eigen values of Eigen vector of the matrix.
Solution:
Consider the characteristic equation as,
i.e.
i.e.
i.e.
Which is the required characteristic equation.
are the required Eigen values.
Now consider the equation
… (1)
Case I:
If Equation (1)becomes
R1 + R2
Thus
independent variable.
Now rewrite equation as,
Put x3 = t
&
Thus .
Is the eigen vector corresponding to .
Case II:
If equation (1) becomes,
Here
Independent variables
Now rewrite the equations as,
Put
&
.
Is the eigen vector corresponding to .
Case III:
If equation (1) becomes,
Here rank of
independent variable.
Now rewrite the equations as,
Put
Thus .
Is the eigen vector for .
Question-10: Diagonalise the matrix
Let A=
The three Eigen vectors obtained are (-1,1,0), (-1,0,1) and (3,3,3) corresponding to Eigen values .
Then and
Also we know that
Question-11: Using Cayley-Hamilton theorem, find , if A = ?
Sol. Let A =
The characteristics equation of A is
Or
Or
By Cayley-Hamilton theorem
L.H.S.
=
By Cayley-Hamilton theorem we have
Multiply both side by
.
Or
=
=
Question-12: Verify the Cayley-Hamilton theorem and find the inverse.
?
Sol. Let A =
The characteristics equation of A is
Or
Or
Or
By Cayley-Hamilton theorem
L.H.S:
= =0=R.H.S
Multiply both side by on
Or
Or [
Or