Back to Study material
BS


Unit 2 question

  1. Find the median score of 7 students in science class

Solution

Score = 19, 17, 16, 15, 12, 11, 10

Median = (7+1)/2 = 4th value

Median = 15

 

2.      find the median of the table given below

Marks obtained

No. Of students

20

6

25

20

28

24

29

28

33

15

38

4

42

2

43

1

Solution

Marks obtained

No. Of students

Cf

20

6

6

25

20

26 (20+6)

28

24

50 (26+24)

29

28

78

33

15

93

38

4

97

42

2

99

43

1

100

Median = (n+1)/2 = 100+1/2 = 50.5

Median = (28+29)/2 = 28.5

 

3.      Calculate the median

Marks

No. Of students

0-4

2

5-9

8

10-14

14

15-19

17

20-24

9

 

Solution

Marks

No. Of students

CF

0-4

2

2

5-9

8

10

10-14

14

24

15-19

17

41

20-24

9

50

 

50

 

n = 50

n         = 50/2= 25

2

The category containing n/2 is 15 -19

Lb = 15

Cfp = 24

f = 17

Ci = 4

Median = 15 + 25-24 *4 = 15.23

  17

4.      In a class of 30 students marks obtained by students in science out of 50 is tabulated below. Calculate the mode of the given data.

Marks obtained

No. Of students

10  -20

5

20 – 30

12

30 – 40

8

40 - 50

5

Solution

The group with the highest frequency is the modal group: - 20 -30

D1 = 12 - 5 = 7

D2 = 12 - 8 = 4

Mode = L1 + (L2 – L1)   d1

                                       d1 +d2

mode  = 20 + (30-20)  7         = 20+10 (7/11) = 26.36

7+4

Mode = 61.8

5.      The following data represent the income distribution of 100 families. Calculate mean income of 100 families?

Income

 

30-40

40-50

50-60

60-70

70-80

80-90

90-100

No. Of families

 

8

12

25

22

16

11

6

 

Solution

Income

No. Of families

Xm (Mid point)

FXm

30-40

8

35

280

40-50

12

34

408

50-60

25

55

1375

60-70

22

65

1430

70-80

16

75

1200

80-90

11

85

935

90-100

6

95

570

 

n = 100

 

∑f Xm = 6198

 

X  = ∑f Xm/n = 6330/100 = 63.30

Mean = 63.30

 

6.      calculate the geometric mean

X

f

60 – 80

22

80 – 100

38

100 – 120

45

120 – 140

35

 

 

 

Solution

X

f

Mid X

Log X

f log X

60 – 80

22

70

1.845

40.59

80 – 100

38

90

1.954

74.25

100 – 120

45

110

2.041

91.85

120 – 140

35

130

2.114

73.99

Total

140

 

 

280.68

 

GM = Antilog ∑ f logxi

     N

= antilog 280.68/140

= antilog 2.00

     GM = 100

 

7.      calculate harmonic mean

Class

Frequency

2-4

3

4-6

4

6-8

2

8-10

1

 

Solution

Class

Frequency

x

f/x

2-4

3

3

1

4-6

4

5

0.8

6-8

2

7

0.28

8-10

1

9

0.11

 

10

 

2.19

 

Harmonic mean = 10/2.19 = 4.55

 

8.     Compute 5-year, 7-year and 9-year moving averages for the following data.

Year

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

Values

2

4

6

8

10

12

14

16

18

20

22

Solution

 

 

5-Year Moving

7-Year Moving

9-Year Moving

Years

Values

Total

Average

Total

Average

Total

Average

1990

2

 

 

 

 

 

 

1991

4

 

 

 

 

 

 

1992

6

30

6

 

 

 

 

1993

8

40

8

56

8

 

 

1994

10

50

10

70

10

90

10

1995

12

60

12

84

12

108

12

1996

14

70

14

98

14

126

14

1997

16

80

16

112

16

 

 

1998

18

90

18

 

 

 

 

1999

20

 

 

 

 

 

 

2000

22

 

 

 

 

 

 

 

9.     Compute 4-year moving averages centered for the following time series:

Year

1990

1991

1992

1993

1994

1995

1996

 

Values

80

90

92

83

87

96

100

 

Solution

 

 

4-Year Moving

 

Years

Values

Total

Average

2 valus moving total

4 year moving average centered

1990

80

 

 

 

 

1991

90

345

86.25

 

 

1992

92

352

88

174.25

87.125

1993

83

358

89.5

177.5

88.75

1994

87

366

91.5

181

90.5

1995

96

393

98.25

189.75

94.875

1996

100

 

 

 

 

1997

110

 

 

 

 

 

10. For a moderately skewed distribution , the median is 20 and the mean is 22.5. Using these values, find the approximate value of the mode.

Solution:

Given,

Mean = 22.5

Median = 20

Mode = x

Now, using the relationship between mean mode and median we get,

(Mean – Mode) = 3 (Mean – Median)

So,



x = 15

So, Mode = 15.