Unit 3
Elementary Matrices
Q1)- Express the matrix A as sum of hermitian and skew-hermitian matrix where
A1)-
Let A =
Therefore and
Let
Again
Hence P is a hermitian matrix.
Let
Again
Hence Q is a skew- hermitian matrix.
We Check
P +Q=
Hence proved.
Q2)- If A = then show that
(i) is hermitian matrix.
(ii) is skew-hermitian matrix.
A2)-
Given A =
Then
Let
Also
Hence P is a Hermitian matrix.
Let
Also
Hence Q is a skew-hermitian matrix.
Q3)- Check whether the following matrix A is symmetric or not?
A =
A3)-
This is not a skew symmetric matrix, because the transpose of matrix A is not equals to -A.
-A = A’
Q4)- Add .
A4)-
A + B =
Q5)-
A5)-
Then
Q6)- Discuss Skew Hermitian Matrix.
A6)-
Skew-Hermitian matrix-
A square matrix A = is said to be hermitian matrix if every element of A is equal to negative conjugate complex j-ith element of A.
Note- all the diagonal elements of a skew hermitian matrix are either zero or pure imaginary.
For example:
The necessary and sufficient condition for a matrix A to be skew hermitian will be as follows-
- A = (͞A)’
Note: A Hermitian matrix is a generalization of a real symmetric matrix and also every real symmetric matrix is Hermitian.
Similarly a Skew- Hermitian matrix is a generalization of a Skew symmetric matrix and also every Skew- symmetric matrix is Skew –Hermitian.
Theorem: Every square complex matrix can be uniquely expressed as sum hermitian and skew-hermitian matrix.
Or If A is given square complex matrix then is hermitian and is skew-hermitian matrices.
Q7)- Discuss different types of matrices.
A7)-
Types of matrices-
1. Rectangular matrix-
A matrix in which the number of rows is not equal to the number of columns, are called rectangular matrix.
Example:
A =
The order of matrix A is 2×3 , that means it has two rows and three columns.
Matrix A is a rectangular matrix.
2. Square matrix-
A matrix which has equal number of rows and columns, is called square matrix.
Example:
A =
The order of matrix A is 3 ×3 , that means it has three rows and three columns.
Matrix A is a square matrix.
3. Row matrix-
A matrix with a single row and any number of columns is called row matrix.
Example:
A =
4. Column matrix-
A matrix with a single column and any number of rows is called row matrix.
Example:
A =
5. Null matrix (Zero matrix)-
A matrix in which each element is zero, then it is called null matrix or zero matrix and denoted by O
Example:
A =
6. Diagonal matrix-
A matrix is said to be diagonal matrix if all the elements except principal diagonal are zero
The diagonal matrix always follows-
Example:
A =
7. Scalar matrix-
A diagonal matrix in which all the diagonal elements are equal to a scalar, is called scalar matrix.
Example-
A =
8. Identity matrix-
A diagonal matrix is said to be an identity matrix if its each element of diagonal is unity or 1.
It is denoted by – ‘I’
I =
9. Triangular matrix-
If every element above or below the leading diagonal of a square matrix is zero, then the matrix is known as a triangular matrix.
There are two types of triangular matrices-
(a) Lower triangular matrix-
If all the elements below the leading diagonal of a square matrix are zero, then it is called lower triangular matrix.
Example:
A =
(b) Upper triangular matrix-
If all the elements above the leading diagonal of a square matrix are zero, then it is called lower triangular matrix.
Example-
A =
Unit 3
Unit 3
Unit 3
Elementary Matrices
Q1)- Express the matrix A as sum of hermitian and skew-hermitian matrix where
A1)-
Let A =
Therefore and
Let
Again
Hence P is a hermitian matrix.
Let
Again
Hence Q is a skew- hermitian matrix.
We Check
P +Q=
Hence proved.
Q2)- If A = then show that
(i) is hermitian matrix.
(ii) is skew-hermitian matrix.
A2)-
Given A =
Then
Let
Also
Hence P is a Hermitian matrix.
Let
Also
Hence Q is a skew-hermitian matrix.
Q3)- Check whether the following matrix A is symmetric or not?
A =
A3)-
This is not a skew symmetric matrix, because the transpose of matrix A is not equals to -A.
-A = A’
Q4)- Add .
A4)-
A + B =
Q5)-
A5)-
Then
Q6)- Discuss Skew Hermitian Matrix.
A6)-
Skew-Hermitian matrix-
A square matrix A = is said to be hermitian matrix if every element of A is equal to negative conjugate complex j-ith element of A.
Note- all the diagonal elements of a skew hermitian matrix are either zero or pure imaginary.
For example:
The necessary and sufficient condition for a matrix A to be skew hermitian will be as follows-
- A = (͞A)’
Note: A Hermitian matrix is a generalization of a real symmetric matrix and also every real symmetric matrix is Hermitian.
Similarly a Skew- Hermitian matrix is a generalization of a Skew symmetric matrix and also every Skew- symmetric matrix is Skew –Hermitian.
Theorem: Every square complex matrix can be uniquely expressed as sum hermitian and skew-hermitian matrix.
Or If A is given square complex matrix then is hermitian and is skew-hermitian matrices.
Q7)- Discuss different types of matrices.
A7)-
Types of matrices-
1. Rectangular matrix-
A matrix in which the number of rows is not equal to the number of columns, are called rectangular matrix.
Example:
A =
The order of matrix A is 2×3 , that means it has two rows and three columns.
Matrix A is a rectangular matrix.
2. Square matrix-
A matrix which has equal number of rows and columns, is called square matrix.
Example:
A =
The order of matrix A is 3 ×3 , that means it has three rows and three columns.
Matrix A is a square matrix.
3. Row matrix-
A matrix with a single row and any number of columns is called row matrix.
Example:
A =
4. Column matrix-
A matrix with a single column and any number of rows is called row matrix.
Example:
A =
5. Null matrix (Zero matrix)-
A matrix in which each element is zero, then it is called null matrix or zero matrix and denoted by O
Example:
A =
6. Diagonal matrix-
A matrix is said to be diagonal matrix if all the elements except principal diagonal are zero
The diagonal matrix always follows-
Example:
A =
7. Scalar matrix-
A diagonal matrix in which all the diagonal elements are equal to a scalar, is called scalar matrix.
Example-
A =
8. Identity matrix-
A diagonal matrix is said to be an identity matrix if its each element of diagonal is unity or 1.
It is denoted by – ‘I’
I =
9. Triangular matrix-
If every element above or below the leading diagonal of a square matrix is zero, then the matrix is known as a triangular matrix.
There are two types of triangular matrices-
(a) Lower triangular matrix-
If all the elements below the leading diagonal of a square matrix are zero, then it is called lower triangular matrix.
Example:
A =
(b) Upper triangular matrix-
If all the elements above the leading diagonal of a square matrix are zero, then it is called lower triangular matrix.
Example-
A =