Back to Study material
CBNT

Unit-3

Numerical Integration and Differentiation

Q1) Given that

X

1.0

1.1

1.2

1.3

Y

0.841

0.891

0.932

0.963

Find at .

A1) Here the first derivative is to be calculated at the beginning of the table, therefore forward difference formula will be used

Forward difference table is given below:

X

Y

1.0

 

1.1

 

1.2

 

1.3

0.841

 

0.891

 

0.932

 

0.962

 

0.050

 

0.041

 

0.031

 

 

-0.009

 

-0.010

 

 

 

-0.001

By Newton’s forward differentiation formula for differentiation

Here 

 

Q2) Find the first and second derivatives of the function given below at the point :

X

1

2

3

4

5

Y

0

1

5

6

8

A2) Here the point of the calculation is at the beginning of the table,

Forward difference table is given by:

X

Y

1

 

2

 

3

 

4

 

5

0

 

1

 

5

 

6

 

8

 

1

 

4

 

1

 

2

 

 

3

 

-3

 

1

 

 

 

-6

 

4

 

 

 

 

 

-10

 

By Newton’s forward differentiation formula for differentiation

Here  , 0.

Again 

At

 

Q3) From the following table of values of x and y find   for 

X

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Y

1.0000

1.02470

1.04881

1.07238

1.09544

1.11803

1.14017

A3) Here the value of the derivative is to be calculated at the beginning of the table.

Forward difference table is given by

X

Y

1.00

 

1.05

 

1.10

 

1.15

 

1.20

 

1.25

 

1.30

1.0000

 

1.02470

 

1.04881

 

1.07238

 

1.09544

 

1.11803

 

1.14017

 

0.02470

 

0.02411

 

0.02357

 

0.02306

 

0.02259

 

0.02214

 

 

-0.00059

 

-0.00054

 

-0.00051

 

-0.00047

 

-0.00045

 

 

 

0.00005

 

0.00003

 

0.00004

 

0.00002

 

 

 

 

-0.00002

 

0.00001

 

-0.00002

 

 

 

 

 

0.00003

 

-0.00003

 

 

 

 

 

 

-0.00006

From Newton’s forward difference formula for differentiation, we get


 

Here

=0.48763

 

Q4) Define Newton backward difference forward formula.

A4) This method is useful for interpolation near the ending of a set of tabular values.

Where 

 

Differentiating both side with respect to p, we get

This formula is applicable to compute the value of for non tabular values of x.

Q5) Given that

X

0.1

0.2

0.3

0..4

Y

1.10517

1.22140

1.34986

1.49182

 

 

 

Find ?

A5) Backward difference table:

X

Y

0.1

 

0.2

 

0.3

 

0.4

1.10517

 

1.22140

 

1.34986

 

1.49182

 

0.11623

 

0.12846

 

0.14196

 

 

0.01223

 

0.01350

 

 

 

0.00127

Newton’s Backward formula for differentiation


 

Here


 

 

Q6) Given that

X

1.0

1.2

1.4

1.6

1.8

2.0

Y

0

0.128

0.544

1.296

2.432

4.0

 

 

 

Find the derivative of y at ?

A6)  The difference table is given below:

X

Y

1.0

 

1.2

 

1.4

 

1.6

 

1.8

 

2.0

0

 

0.128

 

0.544

 

1.296

 

2.432

 

4.0

 

0.128

 

0.416

 

0.752

 

0.136

 

1.568

 

 

 

0.288

 

0.336

 

0.384

 

0.432

 

 

 

0.048

 

0.048

 

0.048

 

 

 

 

0

 

0

Since the point  is at the beginning of the table therefore

From Newton’s forward difference formula for differentiation, we get

Here

Since the point is at the end of the table therefore

Backward difference table is:

X

Y

1.0

 

1.2

 

1.4

 

1.6

 

1.8

 

2.0

0

 

0.128

 

0.544

 

1.296

 

2.432

 

4.000

 

0.128

 

0.416

 

0.752

 

0.136

 

1.568

 

 

0.288

 

0.336

 

0.384

 

0.432

 

 

 

0.048

 

0.048

 

0.048

 

 

 

 

0

 

0

 

Newton’s Backward formula for differentiation

 

Q7) Write down the formula for Stirling, Bessel’s and Evertte’s.

A7)  Stirling’s formula-

Stirling’s formula is defined as-

Note-

  •  Striling’s formula is the mean of Gauss forward and backward formula.
  • The formula gives the best estimates when
  • Bessel’s formula-

    The formula given below is called Bessel’s formula-

     

    Note- this formula is useful when u =1/2 and gives best estimates when ¼<u<3/4

    Everette’s formula-

    The Everette’s formula is defined as-

    Here w = 1 – u,

    When u > ½, it gives best estimate.

     

    Q8) By using Stirling formula to find , given-

                                                 

                         

    A8)  Suppose the origin is at 30 and h = 5

    a + hu = 28

    Where h = 5 and a = 35 then-

    u = -0.4

    The difference table will be as follows-

    U

    X

    y

    -2

     

    -1

     

    0

     

    1

     

    2

    20

     

    25

     

    30

     

    35

     

    40

    49225

     

    48316

     

    47236

     

    45926

     

    44306

     

    -909

     

    -1080

     

    -1310

     

    -1620

     

     

    -171

     

    -230

     

    -310

     

     

     

    -59

     

    -80

     

     

     

     

    -21

     

    By using Stirling formula, we get-

    = 47691.8256

    So that, we have

     

    Q9) By using Stirling’s formula, compute from the table given below

    10

    11

    12

    13

    14

    23.967

    28.060

    31.788

    35.209

    38.368

    A9)

    Here let the origin is at , h = 1,

     

    u

    y

    -2

     

    -1

     

    0

     

    1

     

    2

    0.23967

     

    0.28060

     

    0.31788

     

    0.35209

     

    0.38368

     

     

    0.04093

     

    0.03728

     

    0.034121

     

    0.03159

     

     

     

    -0.00365

     

    -0.00307

     

    -0.00062

     

     

     

     

     

    0.00058

     

    -0.00045

     

     

     

     

     

     

    -0.00013

     

     

     

    Then using Stirling’s formula-

     

    Q10) By using Bessel’s formula to find . Given

    A10)

    The central difference table-

    U

    y

    -1

     

    0

     

    1

     

    2

    2854

     

    3162

     

    3544

     

    3992

     

    308

     

    382

     

    448

     

     

     

    74

     

    66

     

     

     

     

    -8

     

     

    By using Bessel’s formula-

    We get-

     

    Q11) By using Everette’s formula, Evaluate f (30) if

    f (20) = 2854,             f (28) = 3162

    f (36) = 7088,             f (44) = 7984

    A11) Let’s origin is 28,

    A = 28, h = 8

    A +hu = 30

    28 + 8u = 30

    U = 0.25

    And w = 1-u = 1-0.25 = 0.75

    The difference table is-

    U

    y

    -1

     

    0

     

    1

     

    2

    2854

     

    3162

     

    3544

     

    3992

     

    308

     

    382

     

    448

     

     

     

    3618

     

    -3030

     

     

     

     

    -6648

     

     

    By using Everette’s formula-

    So that the value of f (30) = 4064

     

    Q12) By means of Newton’s divided difference formula, find the values of from the following table:

    x

    4

    5

    7

    10

    11

    13

    f(x)

    48

    100

    294

    900

    1210

    2028

     

     

     

    A12) We construct the divided difference table is given by:

    x

    f(x)

    First order divide difference

    Second order divide difference

    Third order divide difference

    Fourth order divide difference

    4

     

     

    5

     

     

    7

     

     

    10

     

     

    11

     

     

    13

    48

     

     

    100

     

     

    294

     

     

    900

     

     

    1210

     

     

    2028

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    0

     

     

       0

     

    By Newton’s Divided difference formula

    .

    Now, putting in above we get

    .

     

    Q13) The following values of the function f(x) for values of x are given:

    Find the value of and also the value of x for which f(x) is maximum or minimum.

    A13) We construct the divide difference table:

    x

    f(x)

    First order divide difference

    Second order divide difference

    Third order divide difference

    1

     

     

    2

     

     

    7

     

     

    8

    4

     

     

    5

     

     

    5

     

     

    4

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

       0

    By Newton’s divided difference formula

    .

    Putting  in above we get

    For maximum and minimum of , we have

    Or 

     

    Q14) Write down the Lagrange’s inverse interpolation formula

    A14) Lagrange’s inverse interpolation formula is given by

     

     

    Q15) Use the inverse interpolation to find value of x at for the following data:

    X

    1

    3

    4

    Y

    4

    12

    19

     

     

     

    A15)  Here , we have the data

    The Lagrange’s inverse interpolation formula is given by

    .

     

    Q16) Use the inverse   Lagrange’s method to find the root of the equation , give data

    X

    30

    34

    38

    42

    F(x)

    -30

    -13

    3

    18

    A16) Here , we have the data

    Also.

    The Lagrange’s inverse interpolation formula is given by

     

    Thus, the approximate   root of the given equation is .

     

    Q17) Define trapezoidal method.

    A17) Let the interval be divided into n equal intervals such that <<…. <=b.

    Here.

    To find the value of.

    Setting n=1, we get

    Or I =

    The above is known as Trapezoidal method.

    Note: In this method second and higher difference are neglected and so f(x) is a polynomial of degree 1.

     

    Q18) Compute the value of   ?

    Using the trapezoidal rule with h=0.5, 0.25 and 0.125.

    A18) Here

    For h=0.5, we construct the data table:

    X

    0

    0.5

    1

    Y

    1

    0.8

    0.5

    By Trapezoidal rule

    For h=0.25, we construct the data table:

    X

    0

    0.25

    0.5

    0.75

    1

    Y

    1

    0.94117

    0.8

    0.64

    0.5

    By Trapezoidal rule

    For h = 0.125, we construct the data table:

    X

    0

    0.125

    0.25

    0.375

    0.5

    0.625

    0.75

    0.875

    1

    Y

    1

    0.98461

    0.94117

    0.87671

    0.8

    0.71910

    0.64

    0.56637

    0.5

    By Trapezoidal rule

    [(1+0.5) +2(0.98461+0.94117+0.87671+0.8+0.71910+0.64+0.56637)]

     

    Q19) Using Simpson’s 1/3 rule with h = 1, evaluate

     

    A19) For h = 1, we construct the data table:

    X

    3

    4

    5

    6

    7

    9.88751

    22.108709

    40.23594

    64.503340

    95.34959

    By Simpson’s Rule

    = 177.3853

     

    Q20) Define Simpson’s 3/8 rule.

    A20) Let the interval be divided into n equal intervals such that <<…. <=b.

    Here.

    To find the value of .

    Setting n=3, we get

    Is known as Simpson’s 3/8 rule which is not as accurate as Simpson’s rule.

    Note: In this rule the fourth and higher differences are neglected and so f(x) is a polynomial of degree 3.

     

    Q21) Evaluate

    A21) Let us divide the range of the interval [0,6] into six equal parts.

    For h=1, we construct the data table:

    X

    0

    1

    2

    3

    4

    5

    6

    1

    0.5

    0.2

    0.1

    0.0588

    0.0385

    0.027

    By Simpson’s 3/8 rule

    +3(0.0385) +0.027]

    =1.3571