Back to Study material
ED


Unit-4


Question Bank

Q1) Convert 268 to binary?

Sol: Step 1 – Converting octal to Decimal

Step

Octal Number

Decimal Number

Step 1

268

((2 × 81) + (6 × 80))10

Step 2

268

(16 + 6 )10

Step 3

268

2210

Octal Number 268 = Decimal Number 2210

 

Step 2 Converting Decimal to Binary

Step

Operation

Result

Remainder

Step 1

22 / 2

11

0

Step 2

11 / 2

5

1

Step 3

5 / 2

2

1

Step 4

2 / 2

1

0

Step 5

1 / 2

0

1

Decimal Number 2210 = Binary Number 101102

Octal Number 268 = Binary Number 101102

 

Q2) Find binary equivalent of 258?

Sol: Its Binary Equivalent

Step

Octal Number

Binary Number

Step 1

258

210 510

Step 2

258

0102 1012

Step 3

258

0101012

Octal Number 258 = Binary Number 101012

 

Q3) Find hexadecimal equivalent of 101012

Sol: Its hexadecimal Equivalent

Step

Binary Number

Hexadecimal Number

Step 1

101012

0001 0101

Step 2

101012

110 510

Step 3

101012

1516

Binary Number 101012 = Hexadecimal Number 1516

 

Q4) Find binary equivalent of 1516?

Sol: Its Binary Equivalent

Step

Hexadecimal Number

Binary Number

Step 1

1516

110 510

Step 2

1516

00012 01012

Step 3

1516

000101012

Hexadecimal Number 1516 = Binary Number 101012

Q5) Calculate the decimal equivalent of 111102?

Sol: Calculating Decimal Equivalent

Step

Binary Number

Decimal Number

Step 1

111102

((1 × 24) + (1 × 23) + (1 × 22) + (1 × 21) + (0 × 20))10

Step 2

111102

(16 + 8 + 4 + 2 + 0)10

Step 3

111102

3010

Binary Number 111102 = Decimal Number 3010

Q6) Find the complement of the Boolean function,

f = p’q + pq’.

Solution:

Using DeMorgan’s theorem, (x + y)’ = x’.y’ we get

f’ = (p’q)’.(pq’)’

Then by second law, (x.y)’ = x’ + y’ we get

f’ = {(p’)’ + q’}.{p’ + (q’)’}

Then by using, (x’)’=x  we get

f’ = {p + q’}.{p’ + q}

f’ = pp’ + pq + p’q’ + qq’

Using x.x’=0 we get

f = 0 + pq + p’q’ + 0

f = pq + p’q

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’.

Q7) Simplify  f(X,Y,Z)=∏M(0,1,2,4)f(X,Y,Z)=∏M(0,1,2,4)using K-map.

 

Prime Implicantsungrouped

Therefore, the simplified Boolean function is

f = (X + Y).(Y + Z).(Z + X)

Q8) Simplify: F(P,Q,R,S)=∑(0,2,5,7,8,10,13,15)

F = P’Q’R’S’ + PQ’R’S’ + P’Q’RS’ +PQ’RS’ + QS

F = P’Q’S’ + PQ’S’ + QS

F = Q’S’ +QS

Q9) Simplify: F(A,B,C)=π(0,3,6,7)

F = A’BC +ABC +A’B’C’ +ABC’

F = BC + C’ ( A’B’ + AB )

Q10)Simplify, f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15) and f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15) using Quine-McClukey tabular method.

 

Solution:

 

Group Name

Min terms

W

X

Y

Z

GA1

2

0

0

1

0

8

1

0

0

0

GA2

6

0

1

1

0

9

1

0

0

1

10

1

0

1

0

GA3

11

1

0

1

1

14

1

1

1

0

GA4

15

1

1

1

1

 

Group Name

Min terms

W

X

Y

Z

GB1

2,6

0

-

1

0

2,10

-

0

1

0

8,9

1

0

0

-

8,10

1

0

-

0

GB2

6,14

-

1

1

0

9,11

1

0

-

1

10,11

1

0

1

-

10,14

1

-

1

0

GB3

11,15

1

-

1

1

14,15

1

1

1

-

 

 

 

 

 

 

Group Name

Min terms

W

X

Y

Z

GB1

2,6,10,14

-

-

1

0

2,10,6,14

-

-

1

0

8,9,10,11

1

0

-

-

8,10,9,11

1

0

-

-

GB2

10,11,14,15

1

-

1

-

10,14,11,15

1

-

1

-

 

 

 

 

 

 

Group Name

Min terms

W

X

Y

Z

GC1

2,6,10,14

-

-

1

0

 

8,9,10,11

1

0

-

-

GC2

10,11,14,15

1

-

1

-

Therefore, the prime implicants are YZ’, WX’ & WY.

           The prime implicant table is shown below.

Min terms / Prime Implicants

2

6

8

9

10

11

14

15

YZ’

1

1

 

 

1

 

1

 

WX’

 

 

1

1

1

1

 

 

WY

 

 

 

 

1

1

1

1

The reduced prime implicant table is shown below.

Min terms / Prime Implicants

8

9

11

15

WX’

1

1

1

 

WY

 

 

1

1

 

Min terms / Prime Implicants

15

WY

1

 

                  Hence, f(W,X,Y,Z) = YZ’ + WX’ + WY