Question Bank
UNIT–1
Calculus
Question-1: Verify Rolle’s theorem for the function f(x) = x2 for
Solution:
Here f(x) = x2;
i) Since f(x) is algebraic polynomial which is continuous in [-1, 1]
Ii) Consider f(x) = x2
Diff. w.r.t. x we get
f'(x) = 2x
Clearly f’(x) exists in (-1, 1) and does not becomes infinite.
Iii) Clearly
f(-1) = (-1)2 = 1
f(1) = (1)2 = 1
f(-1) = f(1).
Hence by Rolle’s theorem, there exist such that
f’(c) = 0
i.e. 2c = 0
c = 0
Thus such that
f'(c) = 0
Hence Rolle’s Theorem is verified.
Question-2: Verify Rolle’s theorem for the given functions below-
1. f(x) = x³ - 6x²+11x-6 in the interval [1,3]
2. f(x) = x²-4x+8 in the interval [1,3]
Sol. (1)
As we know that every polynomial is continuous and differentiable for all points, so that the given function is continuous and differentiable in the interval [1,3]
Also, f(1) = f(3) = 0
Now we find f’(x) = 0
3x² - 12x +11 = 0
We get, x = 2+ and 2 -
Hence both of them lie in (1,3).
Hence the theorem holds good for the given function in interval [1,3]
(2) As we know that every polynomial is continuous and differentiable for all points, so that the given function is continuous and differentiable in the interval [1,3]
Also, f(1) = 1 -4 +8 = 5 and f(3) = 9 – 12 + 8 = 5
Hence f(1) = f(3)
Now the first derivative of the function,
f’(x) = 0
2x – 4 = 0 , gives
X = 2
We can see that 1<2<3, hence there exists 2 between 1 and 3. And f’(2) = 0.
This means that the Rolle’s theorem holds good for the given function and given interval.
Question-3: Verify the Lagrange’s mean value theorem for
Solution:
Here
i) Clearly f(x) = log x is logarithmic function. Hence it is continuous in [1, e]
Ii) Consider f(x) = log x.
Diff. w.r.t. x we get,
Clearly f’(x) exists for each value of & is finite.
Hence all conditions of LMVT are satisfied Hence at least
Such that
i.e.
i.e.
i.e.
i.e.
Since e = 2.7183
Clearly c = 1.7183
Hence LMVT is verified.
Question-4: Verify mean value theorem for f(x) = tan-1x in [0, 1]
Solution:
Here ;
i) Clearly is an inverse trigonometric function and hence it is continuous in [0, 1]
Ii) Consider
Diff. w.r.t. x we get,
Clearly f’(x) is continuous and differentiable in (0, 1) & is finite
Hence all conditions of LMVT are satisfied, Thus there exist
Such that
i.e.
i.e.
i.e.
i.e.
Clearly
Hence LMVT is verified.
Question-5: Verify Cauchy mean value theorems for &in
Solution:
Let &;
i) Clearly f(x) and g(x) both are trigonometric functions. Hence continuous in
Ii) Since &
Diff. w.r.t. x we get,
&
Clearly both f’(x) and g’(x) exist & finite in . Hence f(x) and g(x) is derivable in and
Iii)
Hence by Cauchy mean value theorem, there exist at least such that
i.e.
i.e. 1 = cot c
i.e.
Clearly
Hence Cauchy mean value theorem is verified.
Question-6: Verify Cauchy’s mean value theorem for the function f(x) = x⁴ and g(x) = x² in the interval [1,2]
Sol. We are given, f(x) = x⁴ and g(x) = x
Derivative of these fucntions ,
f’(x) = 4x³ and g’(x) = 2x
Put these values in Cauchy’s formula, we get
2c² =
c² =
c =
Now put the values of a = 1 and b = 2 ,we get
c = = = (approx..)
Hence the Cauchy’s theorem is verified.
Question-7: Expand in power of (x – 3)
Solution:
Let
Here a = 3
Now by Taylor’s series expansion,
… (1)
equation (1) becomes.
Question-8: Expand in ascending powers of x.
Solution:
Here
i.e.
Here h = -2
By Taylors series,
… (1)
equation (1) becomes,
Thus
Question-9: Evaluate
Sol. Let f(x) = , then
And
= 0
= 0
But if we use L’Hospital rule again, then we get-
Question-10: Evaluate
Sol. We can see that this is an indeterminate form of type 0/0.
Apply L’Hospital’s rule, we get
But this is again an indeterminate form, so that we will again apply L’Hospital’s rule-
We get
Question-11: Find , n>0.
Sol. Let f(x) = log x and g(x) =
These two functions satisfied the theorem that we have discussed above-
So that,
Qustion-12: Evaluate
Sol. Here we find that-
So that this limit is the form of 0.
Now,
Change to obtain the limit-
Now this is the form of 0/0,
Apply L’Hospital’s rule-
Question-13: Find out the maxima and minima of the function
Given …(i)
Partially differentiating (i) with respect to x we get
….(ii)
Partially differentiating (i) with respect to y we get
….(iii)
Now, form the equations
Using (ii) and (iii) we get
using above two equations
Squaring both side we get
Or
This show that
Also we get
Thus we get the pair of value as
Now, we calculate
Putting above values in
At point (0,0) we get
So, the point (0,0) is a saddle point.
At point we get
So the point is the minimum point where
In case
So the point is the maximum point where
Question-14: Evaluate
Sol. Here is an increasing function on [1 , 2]
So that,
…. (1)
We know that-
And
Then equation (1) becomes-
Question-15: Evaluate-
Sol.
Question-16: Determine the area enclosed by the curves-
Sol. We know that the curves are equal at the points of interaction, thus equating the values of y of each curve-
Which gives-
By factorization,
Which means,
x = 2 and x = -3
By determining the intersection points the range the values of x has been found-
x | -3 | -2 | -1 | 0 | 1 | 2 |
1 | 10 | 5 | 2 | 1 | 2 | 5 |
And
x | -3 | 0 | 2 |
y = 7 - x | 10 | 7 | 5 |
We get the following figure by using above two tables-
Area of shaded region =
=
= ( 12 – 2 – 8/3 ) – (-18 – 9/2 + 9)
=
= 125/6 square unit
Question-17: Find the area enclosed by the two functions-
and g(x) = 6 – x
Sol. We get the following figure by using these two equations
To find the intersection points of two functions f(x) and g(x)-
f(x) = g(x)
On factorizing, we get-
x = 6, -2
Now
Then, area under the curve-
A =
Therefore the area under the curve is 64/3 square unit.
Question-18: Find the volume of the solid of revolution formed by revolving R around y-axis of the function f(x) = 1/x over the interval [1 , 3].
Sol. The graph of the function f(x) = 1/x will look like-
The volume of the solid of revolution generated by revolving R(violet region) about the y-axis over the interval [1 , 3]
Then the volume of the solid will be-