Unit 3
Partial Differentiation
Question and answer
- Decamper a positive number ‘a’ in to three parts, so their product is maximum
Solution:
Let x, y, z be the three parts of ‘a’ then we get.
… (1)
Here we have to maximize the product
i.e.
By Lagrange’s undetermined multiplier, we get,
… (2)
… (3)
… (4)
i.e.
… (2)’
… (3)’
… (4)
And
From (1)
Thus .
Hence their maximum product is .
2. Find the point on plane nearest to the point (1, 1, 1) using Lagrange’s method of multipliers.
Solution:
Let be the point on sphere which is nearest to the point . Then shortest distance.
Let
Under the condition … (1)
By method of Lagrange’s undetermined multipliers we have
… (2)
… (3)
i.e. &
… (4)
From (2) we get
From (3) we get
From (4) we get
Equation (1) becomes
i.e.
y = 2
If where x + y + z = 1.
Prove that the stationary value of u is given by,
3.
Consider
Put
.
Thus degree of f(x, y) is
4. Find if