Module–5
Vector calculus
Question Bank
Question-1:If and then find-
1.
2.
Sol. 1. We know that-
2.
Question-2: A particle is moving along the curve x = 4 cos t, y = 4 sin t, z = 6t. Then find the velocity and acceleration at time t = 0 and t = π/2.
And find the magnitudes of the velocity and acceleration at time t.
Sol. Suppose
Now,
At t = 0 | 4 |
At t = π/2 | -4 |
At t = 0 | |v|= |
At t = π/2 | |v|= |
Again acceleration-
Now-
At t = 0 | |
At t = π/2 | |
At t = 0 | |a|= |
At t = π/2 | |a|= |
Question-3: If , then show that
1.
2.
Sol.
Suppose and
Now taking L.H.S,
Which is
Hence proved.
2.
So that
Question-4: If then find grad f at the point (1,-2,-1).
Sol.
Now grad f at (1 , -2, -1) will be-
Question-5: If then prove that grad u , grad v and grad w are coplanar.
Sol.
Here-
Now-
Apply
Which becomes zero.
So that we can say that grad u, grad v and grad w are coplanar vectors.
Question-6: Find the directional derivative of 1/r in the direction where
Sol. Here
Now,
And
We know that-
So that-
Now,
Directional derivative =
Question-7: Show that-
1.
2.
Sol. We know that-
2. We know that-
= 0
Question-8: If then find the divergence and curl of .
Sol. we know that-
Now-
Question-9: Evaluate where = (2xy +z2) I +x2j +3xz2 k along the curve x=t, y=t2, z= t3 from (0,0,0) to (1,1,1).
Solution : F x dr =
Put x=t, y=t2, z= t3
Dx=dt ,dy=2tdt, dz=3t2dt.
F x dr =
=(3t4-6t8) dt i – ( 6t5+3t8 -3t7) dt j +( 4t4+2t7-t2)dt k
=t4-6t3)dti –(6t5+3t8-3t7)dt j+(4t4 + 2t7 – t2)dt k
=
=+
Question-10: Evaluate , where S is the surface of the sphere in the first octant.
Sol. Here-
Which becomes-
Question-11: Evaluate , where and V is the closed reason bounded by the planes 4x + 2y + z = 8, x = 0, y = 0, z = 0.
Sol.
Here- 4x + 2y + z = 8
Put y = 0 and z = 0 in this, we get
4x = 8 or x = 2
Limit of x varies from 0 to 2 and y varies from 0 to 4 – 2x
And z varies from 0 to 8 – 4x – 2y
So that-
So that-
Question-12: Evaluate by using Green’s theorem, where C is a triangle formed by
Sol. First we will draw the figure-
Here the vertices of triangle OED are (0,0), (
Now by using Green’s theorem-
Here P = y – sinx, and Q = cosx
So that-
and
Now-
=
Which is the required answer.
Question-13: If and C is the boundary of the triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0), then evaluate by using Stoke’s theorem.
Sol. Here we see that z-coordinates of each vertex of the triangle is zero, so that the triangle lies in the xy-plane and
Now,
Curl
Curl
The equation of the line OB is y = x
Now by stoke’s theorem,
Question-14: Verify Stoke’s theorem for the given function-
Where C is the unit circle in the xy-plane.
Sol. Suppose-
Here
We know that unit circle in xy-plane-
Or
So that,
Now
Curl
Now,
Hence, the Stoke’s theorem is verified.