UNIT 3
Question Bank
Question-1: evaluate
Sol.
Question-2: Evaluate
Sol . 1.
2.
Here f1 = f2
3. Now put y = mx, we get
Here f1 = f2 = f3
Now put y = mx²
4.
Therefore ,
F1 = f2 = f3 =f4
We can say that the limit exists with 0.
Question-3: : evaluate the following-
Sol. First we will calculate f1 –
Here we see that f1 = 0
Now find f2,
Here , f1 = f2
Therefore the limit exists with value 0.
Question-4: Calculate and for the following function
f(x , y) = 3x³-5y²+2xy-8x+4y-20
Sol. To calculate treat the variable y as a constant, then differentiate f(x,y) with respect to x by using differentiation rules,
= [3x³-5y²+2xy-8x+4y-20]
= 3x³] - 5y²] + [2xy] -8x] +4y] - 20]
= 9x² - 0 + 2y – 8 + 0 – 0
= 9x² + 2y – 8
Similarly partial derivative of f(x,y) with respect to y is:
= [3x³-5y²+2xy-8x+4y-20]
= 3x³] - 5y²] + [2xy] -8x] +4y] - 20]
= 0 – 10y + 2x – 0 + 4 – 0
= 2x – 10y +4.
Question-5: if,
Then find.
Sol-
Question-6: if , then show that-
Sol. Here we have,
u = …………………..(1)
Now partially differentiate eq.(1) w.r to x and y , we get
=
Or
………………..(2)
And now,
=
………………….(3)
Adding eq. (1) and (3) , we get
= 0
Hence proved.
Question-7: 3: if w = x² + y – z + sint and x + y = t, find
(a) y,z
(b) t, z
Sol. With x, y, z independent, we have
t = x + y, w = x² + y - z + sin (x + y).
Therefore,
y,z = 2x + cos(x+y)(x+y)
= 2x + cos (x + y)
With x, t, z independent, we have
Y = t-x, w= x² + (t-x) + sin t
thus t, z = 2x – 1
Question-8: If u = u( y – z , z - x , x – y) then prove that = 0
Sol. Let,
Then,
By adding all these equations we get,
= 0 hence proved.
Question-9: If where then find the value of ?
Given
Where
By chain rule
Now substituting the value of x ,y,z we get
-6
8
Question-10: If then calculate
Given
By Chain Rule
Putting the value of u =
Again partially differentiating z with respect to y
By Chain Rule
by substituting value
Question-11: : If u = u(), then prove that .
Sol. We are given that,
u = u () = u( r , s)
Where r = and s =
Or we can write as-
r = and s =
Differentiate them partially with respect to x , y and z. , we get
As we know that-
Then,
Adding all these results, we get
.
Question-12: If u = x + y + z , uv = y + z , uvw = z , find
Sol. Here we have,
x = u – uv = u(1-v)
y = uv – uvw = uv( 1- w)
And z = uvw
So that,
=
Apply
=
Now we get,
= u²v(1-w) + u²vw
= u²v
Question-13: Find the value of n so that the equation
Satisfies the relation
Given
Partially differentiating V with respect to r keeping as constant
Again partially differentiating given V with respect to keeping r as constant
Now, we are taking the given relation
Substituting values using eq(i) and eq(ii)
On solving we get
Question-14: If
Then show that
Given
Partially differentiating u with respect to x keeping y and z as constant
Similarly partially differentiating u with respect to y keeping x and z as constant
…….(ii)
Similarly partially differentiating u with respect to z keeping x and y as constant
…….(iii)
LHS:
Hence proved
Question-15: Expand f(x , y) = in powers of x and y about origin.
Sol. Here we have the function-
f(x , y) =
Here , a = 0 and b = 0 then
f(0 , 0) =
Now we will find partial derivatives of the function-
Now using Taylor’s theorem-
+………
Suppose h = x and k = y , we get
+…….
= +……….
Question-16: Find the Taylor’s expansion of about (1 , 1) up to second degree term.
Sol. We have,
At (1 , 1)
Now by using Taylor’s theorem-
……
Suppose 1 + h = x then h = x – 1
1 + k = y then k = y - 1
……
=
……..
Question-17: Find the maximum and minimum point of the function
Partially differentiating given equation with respect to and x and y then equate them to zero
On solving above we get
Also
Thus we get the pair of values (0,0), (,0) and (0,
Now, we calculate
At the point (0,0)
So function has saddle point at (0,0).
At the point (
So the function has maxima at this point (.
At the point (0,
So the function has minima at this point (0,.
At the point (
So the function has an saddle point at (
Question-18: Find the point on plane nearest to the point (1, 1, 1) using Lagrange’s method of multipliers.
Solution:
Let be the point on sphere which is nearest to the point . Then shortest distance.
Let
Under the condition … (1)
By method of Lagrange’s undetermined multipliers we have
… (2)
… (3)
i.e. &
… (4)
From (2) we get
From (3) we get
From (4) we get
Equation (1) becomes
i.e.
y = 2