Back to Study material
MATHS I


Unit-4


Multivariable Differential Calculus

Question-1: Calculate    and   for the following function

f(x , y) = 3x³-5y²+2xy-8x+4y-20

Sol. To calculate   treat the variable y as a constant, then differentiate f(x,y) with respect to x by using differentiation rules,

= [3x³-5y²+2xy-8x+4y-20]

              = 3x³] - 5y²] + [2xy] -8x] +4y] - 20]

              = 9x² - 0 + 2y – 8 + 0 – 0

              = 9x² + 2y – 8

Similarly partial derivative of f(x,y) with respect to y is:

= [3x³-5y²+2xy-8x+4y-20]

                           = 3x³] - 5y²] + [2xy] -8x] +4y] - 20]

                           = 0 – 10y + 2x – 0 + 4 – 0

                           = 2x – 10y +4.

 

Question-2: Calculate    and   for the following function

f( x, y) = sin(y²x + 5x – 8)

Sol. To calculate   treat the variable y as a constant, then differentiate f(x,y) with respect to x by using differentiation rules,

[sin(y²x + 5x – 8)]

                           = cos(y²x + 5x – 8)(y²x + 5x – 8)

                           = (y² + 50)cos(y²x + 5x – 8)

Similarly partial derivative of f(x,y) with respect to y is,

[sin(y²x + 5x – 8)]

                           = cos(y²x + 5x – 8)(y²x + 5x – 8)

                           = 2xycos(y²x + 5x – 8)

 

Question-3: Find

Sol.  First we will differentiate partially with repsect to r,

Now differentiate partially with respect to θ, we get

 

Question-4: if , then show that-

Sol. Here we have,

u =     …………………..(1)

Now partially differentiate eq.(1) w.r to x and y , we get

                                               =

Or

                 ………………..(2)

And now,


 

                                                =

         ………………….(3)

Adding eq. (1) and (3) , we get

Hence proved.

 

Question-5: let q = 4x + 3y      and    x = t³ + t² + 1    , y = t³ - t² - t

                     Then find  .

Sol. :. =

                      Where, f1 = ,  f2 = 

 

In this example f1 = 4    ,      f2 = 3

Also,              3t² + 2t    ,               

4(3t² + 2t) + 3(

=  21t² + 2t – 3

If w = x² + y – z + sintand  x + y = t, find

 

                   (a)    y,z

 

(b)   t, z

 

Sol. With x, y, z independent, we have

t = x + y, w = + y - z + sin (x + y).

Therefore,

y,z = 2x + cos(x+y)(x+y)

=  2x + cos (x + y)

With x, t, z independent, we have

                                                          Y = t-x,   w=  x² + (t-x) + sin t

Thust, z   =  2x - 1

 

Question-6: If u = u( y – z , z - x , x – y)  then prove that  = 0

 

Sol. Let,

 

 

Then,

 

 

By adding all these equations we get,

= 0    hence proved.

 

Question-7: If z is the function of x and y , and x =   , y = , then prove that,

 

Sol. Here , it is given that,  z is the function of x and y & x , y are the functions of u and v.

So that,

  ……………….(1)

And,

   ………………..(2)

 

Also there is,

 

      x =   and  y = ,

Now,

 

   ,       ,      ,    

 

From equation(1) , we get

 

  ……………….(3)

 

And from eq. (2) , we get

 

    …………..(4)

Subtracting eq. (4) from (3), we get

 

= ) – (

 

              = x

Hence proved.

 

Question-8: Show that

                              Given

 

                                 Therefore f(x,y,z) is an homogenous equation of degree 2 in x, y and z

 

Question-9: If

                         Let

                                 Thus u is an homogenous function of degree 2 in x and y

                               Therefore by Euler’s theorem

substituting the value of u

                                               Hence proved

 

Question-10:If u = x²(y-x) + y²(x-y), then show that   -2 (x – y)².

 

Solution - here,  u = x²(y-x) + y²(x-y)

                                u = x²y - x³ + xy² - y³,

Now differentiate u partially with respect to x and y respectively,

=  2xy – 3x² + y²        --------- (1)

= x² + 2xy – 3y²          ---------- (2)

Now adding equation (1) and (2), we get

= -2x² - 2y² + 4xy

                                               = -2 (x² + y² - 2xy)

                                               = -2 (x – y)²

 



Unit-4


Multivariable Differential Calculus

Question-1: Calculate    and   for the following function

f(x , y) = 3x³-5y²+2xy-8x+4y-20

Sol. To calculate   treat the variable y as a constant, then differentiate f(x,y) with respect to x by using differentiation rules,

= [3x³-5y²+2xy-8x+4y-20]

              = 3x³] - 5y²] + [2xy] -8x] +4y] - 20]

              = 9x² - 0 + 2y – 8 + 0 – 0

              = 9x² + 2y – 8

Similarly partial derivative of f(x,y) with respect to y is:

= [3x³-5y²+2xy-8x+4y-20]

                           = 3x³] - 5y²] + [2xy] -8x] +4y] - 20]

                           = 0 – 10y + 2x – 0 + 4 – 0

                           = 2x – 10y +4.

 

Question-2: Calculate    and   for the following function

f( x, y) = sin(y²x + 5x – 8)

Sol. To calculate   treat the variable y as a constant, then differentiate f(x,y) with respect to x by using differentiation rules,

[sin(y²x + 5x – 8)]

                           = cos(y²x + 5x – 8)(y²x + 5x – 8)

                           = (y² + 50)cos(y²x + 5x – 8)

Similarly partial derivative of f(x,y) with respect to y is,

[sin(y²x + 5x – 8)]

                           = cos(y²x + 5x – 8)(y²x + 5x – 8)

                           = 2xycos(y²x + 5x – 8)

 

Question-3: Find

Sol.  First we will differentiate partially with repsect to r,

Now differentiate partially with respect to θ, we get

 

Question-4: if , then show that-

Sol. Here we have,

u =     …………………..(1)

Now partially differentiate eq.(1) w.r to x and y , we get

                                               =

Or

                 ………………..(2)

And now,


 

                                                =

         ………………….(3)

Adding eq. (1) and (3) , we get

Hence proved.

 

Question-5: let q = 4x + 3y      and    x = t³ + t² + 1    , y = t³ - t² - t

                     Then find  .

Sol. :. =

                      Where, f1 = ,  f2 = 

 

In this example f1 = 4    ,      f2 = 3

Also,              3t² + 2t    ,               

4(3t² + 2t) + 3(

=  21t² + 2t – 3

If w = x² + y – z + sintand  x + y = t, find

 

                   (a)    y,z

 

(b)   t, z

 

Sol. With x, y, z independent, we have

t = x + y, w = + y - z + sin (x + y).

Therefore,

y,z = 2x + cos(x+y)(x+y)

=  2x + cos (x + y)

With x, t, z independent, we have

                                                          Y = t-x,   w=  x² + (t-x) + sin t

Thust, z   =  2x - 1

 

Question-6: If u = u( y – z , z - x , x – y)  then prove that  = 0

 

Sol. Let,

 

 

Then,

 

 

By adding all these equations we get,

= 0    hence proved.

 

Question-7: If z is the function of x and y , and x =   , y = , then prove that,

 

Sol. Here , it is given that,  z is the function of x and y & x , y are the functions of u and v.

So that,

  ……………….(1)

And,

   ………………..(2)

 

Also there is,

 

      x =   and  y = ,

Now,

 

   ,       ,      ,    

 

From equation(1) , we get

 

  ……………….(3)

 

And from eq. (2) , we get

 

    …………..(4)

Subtracting eq. (4) from (3), we get

 

= ) – (

 

              = x

Hence proved.

 

Question-8: Show that

                              Given

 

                                 Therefore f(x,y,z) is an homogenous equation of degree 2 in x, y and z

 

Question-9: If

                         Let

                                 Thus u is an homogenous function of degree 2 in x and y

                               Therefore by Euler’s theorem

substituting the value of u

                                               Hence proved

 

Question-10:If u = x²(y-x) + y²(x-y), then show that   -2 (x – y)².

 

Solution - here,  u = x²(y-x) + y²(x-y)

                                u = x²y - x³ + xy² - y³,

Now differentiate u partially with respect to x and y respectively,

=  2xy – 3x² + y²        --------- (1)

= x² + 2xy – 3y²          ---------- (2)

Now adding equation (1) and (2), we get

= -2x² - 2y² + 4xy

                                               = -2 (x² + y² - 2xy)

                                               = -2 (x – y)²