Back to Study material
M 2


Unit - 6


Statistics and finite differences

Q1) Find the best values of a and b so that y = a + bx fits the data given in the table

x

0

1

2

3

4

y

1.0

2.9

4.8

6.7

8.6

 

A1)

y = a + bx

x

y

Xy

0

1.0

0

0

1

2.9

2.0

1 

2

4.8

9.6

4

3

6.7

20.1

9

4

8.6

13.4

16

x = 10

y ,= 24.0

xy = 67.0

 

Normal equations, y= na+ bx  (2)

On putting the values of

On solving (4) and (5) we get,

On substituting the values of a and b in (1) we get

 

Q2) By the method of least squares, find the straight line that best fits the following data )

X

1

2

3

4

5

Y

14

27

40

55

68

 

A2)

Let the equation of the straight line best fit be y = a + bx.     (1)

x

y

x y

1

14

14

1

2

27

54

4

3

40

120

9

4

55

220

16

5

68

340

25

x=15

y=204

xy=748

 

Normal equations are

On putting the values of x, y, xy and in (2) and (3) we have

On solving equations (4) and (5) we get

On substituting the values of (a) and (b) in (1) we get,

 

Q3) Find the least squares approximation of second degree for the discrete data

x

2

-1

0

1

2

y

15

1

1

3

19


 

A3)

Let the equation of second degree polynomial be

x

y

Xy

-2

15

-30

4

60

-8

16

-1

1

-1

1

1

-1

1

0

1

0

0

0

0

0

1

3

3

1

3

1

1

2

19

38

4

76

8

16

x=0

y=39

xy=10

 

Normal equations are

On putting the values of x, y, xy,

have

On solving (5),(6),(7), we get,

The required polynomial of second degree is

 

Q4) Fit a second degree parabola to the following data by least square method:

x

1929

1930

1931

1932

1933

1934

1935

1936

1937

y

352

356

357

358

360

361

365

360

359

 

A4)

Taking

Taking

The equation is transformed to

x

y

Uv

1929

-4

352

-5

20

16

-80

-64

256

1930

-3

360

-1

3

9

-9

-27

81

1931

-2

357

0

0

4

0

-8

16

1932

-1

358

1

-1

1

1

-1

1

1933

0

360

3

0

0

0

0

0

1934

1

361

4

4

1

4

1

1

1935

2

361

4

8

4

16

8

16

1936

3

360

3

9

9

27

27

81

1937

4

350

2

8

16

32

64

256

Total

u=0

 

y=11

uv=51

 

Normal equations are

On solving these equations we get

 

Q5) Find the least squares approximation of second degree for the discrete data

x

2

-1

0

1

2

y

15

1

1

3

19

 

A5)

Let the equation of second degree polynomial be

x

y

Xy

-2

15

-30

4

60

-8

16

-1

1

-1

1

1

-1

1

0

1

0

0

0

0

0

1

3

3

1

3

1

1

2

19

38

4

76

8

16

x=0

y=39

xy=10

 

Normal equations are

On putting the values of x, y, xy,

have

On solving (5),(6),(7), we get,

The required polynomial of second degree is

 

Q6) Fit a second degree parabola to the following data.

X = 1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y = 1.1

1.3

1.6

2.0

2.7

3.4

4.1

 

A6)

We shift the origin to (2.5, 0) antique 0.5 as the new unit. This amounts to changing the variable x to X, by the relation X = 2x – 5.

Let the parabola of fit be y = a + bXThe values of X etc. Are calculated as below:

x

X

y

Xy

1.0

-3

1.1

-3.3

9

9.9

-27

81

1.5

-2

1.3

-2.6

4

5.2

-5

16

2.0

-1

1.6

-1.6

1

1.6

-1

1

2.5

0

2.0

0.0

0

0.0

0

0

3.0

1

2.7

2.7

1

2.7

1

1

3.5

2

3.4

6.8

4

13.6

8

16

4.0

3

4.1

12.3

9

36.9

27

81

Total

0

16.2

14.3

28

69.9

0

196

 

The normal equations are

7a + 28c =16.2; 28b =14.3;. 28a +196c=69.9

Solving these as simultaneous equations we get

Replacing X bye 2x – 5 in the above equation we get

Which simplifies to y =

This is the required parabola of the best fit.

 

Q7) Estimate the chlorine residual in a swimming pool 5 hours after it has been treated with chemicals by fitting an exponential curve of the form

of the data given below-

Hours(X)

2

4

6

8

10

12

Chlorine residuals (Y)

1.8

1.5

1.4 

1.1

1.1

0.9

 

A7)

Taking log on the curve which is non-linear,

We get-

Put

Then-

Which is the linear equation in X,

Its nomal equations are-

Here N = 6,

Thus the normal equations are-

On solving, we get

Or

A = 2.013 and B = 0.936

Hence the required least square exponential curve-

Prediction-

Chlorine content after 5 hours-

 

Q8) What do you understand by positive correlation and negative correlation?

A8)

Positive Correlation:

Correlation between two variables is said to be positive if the values of thevariables deviate in the same direction i.e. if the values of one variable increase (or decrease) then the values of other variable also increase (or decrease). For example:

1. Heights and weights of group of persons;

2. House hold income and expenditure;

3. Amount of rainfall and yield of crops

 

Negative Correlation:

Correlation between two variables is said to be negative if the values of variables deviate in opposite direction i.e. if the values of one variable increase (or decrease) then the values of other variable decrease (or increase). Some examples of negative correlations are correlation between

1. Volume and pressure of perfect gas;

2. Price and demand of goods;

3. Literacy and poverty in a country

 

Q9) What is Karl Pearson’s coefficient of correlation?

A9)

Coefficient of correlation measures the intensity or degree of linear relationship between two variables. It was given by British Biometrician Karl Pearson (1867-1936).

Karl Pearson’s Coefficient of Correlation is widely used mathematical method is used to calculate the degree and direction of the relationship between linear related variables. The coefficient of correlation is denoted by “r”.

If X and Y are two random variables then correlation coefficient between X and Y is denoted by r and defined as-

Karl Pearson’s coefficient of correlation-

Here- and

 

Q10) Find the correlation coefficient between Age and weight of the following data-

Age

30

44

45

43

34

44

Weight

56

55

60

64

62

63

 

A10)

x

Y

(

)
)

30

56

-10

100

-4

16

40

44

55

4

16

-5

25

-20

45

60

5

25

0

0

0

43

64

3

9

4

16

12

34

62

-6

36

2

4

-12

44

63

4

16

3

9

12

 

Sum= 240

 

360

 

0

 

202

 

0

 

70

 

 

32

 

Karl Pearson’s coefficient of correlation-

 

Q11) Find the correlation coefficient between the values X and Y of the dataset given below by using short-cut method-

X

10

20

30

40

50

Y

90

85

80

60

45

 

A11)

X

Y

10

90

-20

400

20

400

-400

20

85

-10

100

15

225

-150

30

80

0

0

10

100

0

40

60

10

100

-10

100

-100

50

45

20

400

-25

625

-500

 

Sum = 150

 

360

 

0

 

1000

 

10

 

1450

 

-1150

 

Short-cut method to calculate correlation coefficient-

 

Q12) Psychological tests of intelligence and of engineering ability were applied to 10 students. Here is a record of ungrouped data showing intelligence ratio (I.R) and engineering ratio (E.R). Calculate the co-efficient of correlation.

Student

A

B

C

D

E

F

G

H

I

J

I.R

105

104

102

101

99

98

96

92

93

92

E.R

101

103

100

98

96

104

92

94

97

94

 

A12)

We construct the following table:

Student

Intelligence ratio

Engineering ratio

A

B

C

D

E

F

G

H

I

J

   100                      6

    104                     5

    102                     3

    101                     2

    100                     1

      99                     0

      98                    -1

      96                    -3

      93                    -6

      92                    -7

  101                 3

  103                 5

  100                 2

   98                  0

   95                 -3

   96                 -2

  104                 6

   92                 -6

   97                 -1

   94                 -4

36

25

9

4

1

0

1

9

36

49

9

25

4

0

9

4

36

36

1

16

18

25

6

0

-3

0

-6

18

6

28

Total

     990                    0

  980                 0

170

140

92

 

From this table, mean of i.e., and mean of , i.e.,

Substituting these values in the formula (1), we have

 

Q13) Calculate coefficient of correlation between X and Y series using Karl pearson shortcut method

X

14

12

14

16

16

17

16

15

Y

13

11

10

15

15

9

14

17

 

A13)

Let assumed mean for X = 15, assumed mean for Y = 14

X

Y

Dx

Dx2

Dy

Dy2

Dxdy

14

13

-1.0

1.0

-1.0

1.0

1.0

12

11

-3.0

9.0

-3.0

9.0

9.0

14

10

-1.0

1.0

-4.0

16.0

4.0

16

15

1.0

1.0

1.0

1.0

1.0

16

15

1.0

1.0

1.0

1.0

1.0

17

9

2.0

4.0

-5.0

25.0

-10.0

16

14

1

1

0

0

0

15

17

0

0

3

9

0

120

104

 0

18

 -8

62

6

 

r = 48/√144*√432 = 0.19

 

Q14) Two variables X and Y are given in the dataset below, find the two lines of regression.

x

65

66

67

67

68

69

70

71

y

66

68

65

69

74

73

72

70

 

A14)

The two lines of regression can be expressed as-

And

x

y

Xy

65

66

4225

4356

4290

66

68

4356

4624

4488

67

65

4489

4225

4355

67

69

4489

4761

4623

68

74

4624

5476

5032

69

73

4761

5329

5037

70

72

4900

5184

5040

71

70

5041

4900

4970

Sum = 543

557

36885

38855

37835

 

Now-

And

Standard deviation of x-

Similarly-

Correlation coefficient-

Put these values in regression line equation, we get

Regression line y on x-

Regression line x on y-

 

Q15) Compute the Spearman’s rank correlation coefficient of the dataset given below-

Person

A

B

C

D

E

F

G

H

I

J

Rank in test-1

9

10

6

5

7

2

4

8

1

3

Rank in test-2

1

2

3

4

5

6

7

8

9

10

 

A15)

Person

Rank in test-1

Rank in test-2

d =

A

9

1

8

64

B

10

2

8

64

C

6

3

3

9

D

5

4

1

1

E

7

5

2

4

F

2

6

-4

16

G

4

7

-3

9

H

8

8

0

0

I

1

9

-8

64

J

3

10

-7

49

Sum

 

 

 

280

 

 

Q16)

Test 1

8

7

9

5

1

Test 2

10

8

7

4

5

 

A16)

Here, highest value is taken as 1

Test 1

Test 2

Rank T1

Rank T2

d

d2

8

10

2

1

1

1

7

8

3

2

1

1

9

7

1

3

-2

4

5

4

4

5

-1

1

1

5

5

4

1

1

 

 

 

 

 

8

 

R = 1 – (6*8)/5(52 – 1) = 0.60

 

Q17) Deduce Lagrange’s formula for interpolation.  The observed values of a function  are respectively  168,120,72 and 63 at the  four position3,7,9 and 10 of  the independent variable. What is the  best estimate you can for  the value of the  function  at the position6 of  the independent variable.

A17)

We construct  the table for the given data:

X

3

6

7

9

10

Y=f(x)

168

?

120

72

63

We need to  calculate for  x =  6, we need f(6)=?

Here

We get

By Lagrange’s interpolation formula,  we have

Hence the estimated value for x=6 is 147.

 

Q18) Find the polynomial of  fifth degree from  the following data

X

0

1

3

5

6

9

Y=f(x)

-18

0

0

-248

0

13104

 

A18)

Here

We get 

By Lagrange’s  interpolation  formula