Back to Study material
SDD3

UNIT 5Q1) Enlist different categories of water tank and classify water tanks depending upon the shape.A1) A water tank is used to store water to tide over the daily requirements.Water tanks can be classified under three categories:(i) Tanks resting on ground,   (ii) Elevated tanks supported on staging and (iii) Underground tanks.Depending in shape, water tanks are classified as (i) Circular tanks, (ii) Rectangular tanks  (iii) Spherical tanks,(iv) Intze tanks and  (v) Circular tanks with conical bottoms  Q2) Discuss the codal provisions for water tanks with respect to reinforcement and cracking.A2)(i) Minimum reinforcement in water tank :(1) IS codes permit a minimum of 0.3% of concrete section in each direction for sections upto 100 mm thick.(2) For sections with thickness between 100 mm and 450 mm, minimum steel in each direction may be reduced from 0.3% for 100 mm thick section to 0.2% for 450 mm.(3) In concrete sections of 225 mm or greater, two layers of steel shall be placed one near each face of the section to make up minimum steel.(4) In floor, labs resting directly on firm ground, the percentage of steel may be reduced. In no case, minimum percentage of steel be less than 0.15% of the concrete section.(ii) Causes of cracking and its controlling : Causes of cracking :1. Direct tension, Bending tension, and shear in concrete2. Drying shrinking or temperature changeControlling of cracking :1. For liquid faces of parts of members in contact with liquid, the minimum cover to all reinforcement should be 25 mm or diameter of main reinforcement, whichever is greater. For sea water, it may increased by 12 mm but need not be considered in calculations.      2. For faces away from liquid, cover should be same as provided for other RC sections. Q3) Discuss in brief different joints in water tanks.A3)(a) Movements joints    (b)  Construction joints (c) Temporary open joints (a) Movements joints : All movement joints are necessarily flexible joints, (i) Contraction joint, (ii) Expansion joint and  (iii) Sliding joint(i) Contraction joint :(1) It accommodates contraction of concrete.(2) It may be a complete contraction joint (Fig. (a)) or a partial contraction joint (Fig. (b)).(3) In both cases, initial gap is absent at joint,(4) In complete contraction joint, water bar is inserted.(5) In partial contraction joint, mouth of joint is filled with joint sealing compound.(6) The commonly used materials for joint realing are asphatt, bitumen or coal for pitch with or without fillers.(ii) Expansion joint :(i) It accommodates expansion or contraction of structures.(ii) Initial gap is filled with a joint filler.(iii) Joint fillers are compressible sheet used as spaces.(iii) Sliding joint :(i) It is a movement joint having complete discontinuity in reinforcement as well as concrete.(ii) A special provision is made to facilitate relative movement. 

12 

13 

(a) complete contraction joint (b) partial contraction joint Fig.(b) Construction joints :(1) It is introduced in concrete for convenience in construction.    (2) It is a rigid joint.(3) The portion and arrangement of these joints should be derived by engineer.(c) Temporary Open Joints :(1) It is a gap temporarily left between concrete of adjoining parts of a structure.(2) The width of gap should sufficient so as to prepare the sides for filling.  Q4) A circular water tank of 8 m diameter is 4.5 m high. The floor slab is monolithic with the walls. Design the wall of the tank.              A4) 

Depth of tank = 4.5 m,      Diameter of tank = 8 m

 Assume a free board of 200 mm

   Total height of tank H  = 4.5 + 0.2 = 4.7 m    

     Unit weight of water  = 9.8 kN/m3

 Assume M25 concrete and Fe415 steel

Permissible tensile stress in steel = 150 N/mm2 = st

Permissible tensile stress in concrete = 1.3 N/mm2 

  cbc = 8.5 N/mm2

   Modular ratio, m = = 11

Design constants :

  n = =  = 0.384

  j = 1 – =  1= 0.872

  k = cbc j n = 8.5 0.872 0.384 = 1.423

Design for Cantilever Action :

  • The height ‘h’ above base upto which cantilever action exist is give by h = or 1m whichever is more.

  h =  = 1.567 m

Cantilever moment  =  H h = 9.8 4.7 1.567 = 18.85 kN-m.

  Depth of balanced section d =   = = 115 mm

 Let d =  115 = 153.35 mm

 Let us provide d = 155 mm and total thickness = 190 mm

  Ast =  =   = 929.76 mm2

 Using 10 mm bars

  s =  = 80.11 mm

  = 84.47 mm

Provide 10 mm bars @ 80 mm c/c near inner face, keeping a clear cover of 30 mm.

Cultural alternate bars at a height of 1.56 m and spacing of 160 mm is available in top 3.14 m height.

Design for hoop action :

Maximum hoop tension is considered at 1.56 m height.

  T =  (H – h) = 9.8 (4.7 – 1.56) = 123.09 kN

   Ash =  = 820.58 mm2

 Using 10 mm bars,

  Spacing =  1000 = 95.71 mm

  Provide 10 mm bars @ 95 mm c/c.

Check for tensile stress in concrete :

   Ash =  1000 = 826.73 mm2

  ct =   = 

   = 0.61N/mm2< 1.3 N/mm2

 Hence OK.

Provide a spacing of 100 mm for 1.56 m height and 300 mm spacing above 1.56 m height .

11 



 

 

Q5) A cylindrical tank of capacity 7,00,000 litres is resting on good unyielding ground.  The depth of tank is limited to 5m. A free board of 300 mm may be provided. The wall and the base slab are cast integrally. Design the tank using M20 concrete and Fe 415 grade steel. Draw the following-Plan at base and Cross section through centre of tank.

A5)

Step 1 : Dimension of tank

 H =  5 – 0.3 = 4.7 and volume V = 700 m3

 A = 700/4.7 = 148.94 m2

 D =  (4 148.94/) = 13.77 14 m

Step 2 : Analysis for hoop tension and bending moment

 One meter width of the wall is considered and the thickness of the wall is estimated as t = 30H + 50 = 191 mm.

 The thickness of wall is assumed as 200 mm.

 Referring to table 9 of IS3370 (part IV), the maximum coefficient for hoop tension = 0.575

 Analysis for hoop tension and bending moment (Contd.)

  Tmax = 0.575 10 4.7 7 = 189.175 kN

 Referring to table 10 of IS3370 (part IV), the maximum coefficient for
bending moment = – 0.0146 (produces tension on water side)

  Mmax = 0.0146 10 4.73 = 15.15 kN-m

Step 3 : Design of section:

 For M20 concrete σcbc = 7, For Fe415 steel σst = 150 MPa and m=13.33 for M20 concrete and Fe415 steel

 The design constants are:

  k =  = 0.39

  j = 1-(k/3)=0.87

  Q = ½ σcbc x j x k = 1.19

 Effective depth is calculated as

  d =  =  = 112.94 mm

 Let over all thickness be 200 mm with effective cover 33 mm dprovided=167 mm

  Ast =  =  = 695.16 mm2

 Spacing of 16 mm diameter bar =  = 289.23 mmc/c

 (Max spacing 3d=501mm)

 Provide #16@275 c/c as vertical reinforcement on water face

 

Hoop steel :

  Ast1 =  =  = 1261 mm2

Spacing of 12 mm diameter bar =  = 89 mmc/c

Provide #12@80 c/c as hoop reinforcement on water face

Actual area of steel provided 

  Ast =  1412.5 mm2

Step 4 : Check for tensile stress:

  c = 

   =  = 0.87 N/mm2

Permissible stress = 0.27√fck=1.2 N/mm2>c Safe

Step 5 : Distribution Steel:

 Minimum area of steel is 0.24% of concrete area

  Ast = (0.24/100) 1000 200 = 480 mm2

 Spacing of 8 mm diameter bar = = 104.7 mmc/c 

Provide #8 @ 100 c/c as vertical and horizontal distribution on the outer face.

The thickness of base slab shall be 150 mm. The base slab rests on firm ground, hence only minimum reinforcement is provided.

  Ast = (0.24/100) 1000 150 = 360 mm2

 Reinforcement for each face = 180 mm2

 Spacing of 8 mm diameter bar =  = 279 mmc/c 

Provide #8 @ 250 c/c as vertical and horizontal distribution on the outer face.

5 

 Q6) Write a short note on preliminary dimensions of a rectangular water tank.A6)

The exact analysis of rectangular water tank is difficult and the design cab be done by approximate method as per is IS3370. Two cases are considered for rectangular water tank.

1. When <2 :

In this case the tank walls are assumed to cantilever continuous frame  subjected to hydrostatic pressure. The bottom  or 1 m (which is greater) is designed as cantilever and the top portion of a continuous frame in which moments are calculated by moment distribution. In addition to the walls are subjected to direct tension due to hydrostatic pressure.

The direct tension in long wall :

 Specific weight of water = w (H h) × B

The direct tension in short wall =  × L

a 


Fig. 5.7.1

2. If >2 :

76The longer wall are considered as vertical cantilever for the whole height from the base the short wall is to be designed as simply supported over long wall. The maximum BM in long wall at the base.

 P =   × wH × H

 BM=  × wH × H ×  =

The maximum BM at the junction of steel and long wall =  B2Fig. 5.7.2

Maximum positive BM at the centre of short wall = 

The maximum BM for the bottom of short wall =  or

Direct tension in long wall =  direct tension in short wall =

 

Q7) A rectangular water tank open at the top is to be provided at the ground level to accommodate 45 kl of water. The depth of water is to be about 3 m with FB of 0.2. The ratio of length of longer to shorter side of tank is limited to 1.25. Design the tank assuming M20 and Fe250.

A7)

Given :

  Capacity = 45 kl

  1 kl = 1 m3 = 45 m3

 Depth of water = 3m

 Free board = 0.2 m

 Height of tank = 3 + 0.2 = 3.2 m

 Volume = L B H

 45 = L B 3.2

80 L B = 14.06

  = 1.25 B

 L = 1.25 B

 1.25 B B = 14.06

 B = 3.35 m 3.5 m Fig.  P. 5.7.1

Intensity of pressure at 1 m from base

   = w H = 10 2 = 20 kN/m2

  For 1 m depth of wall = 10 1 = 10 kN/m2

81 


Fig . P. 4.7.1(A)

Moment distribution :

Joint

Member

K

k

D. F. = ­

A

AB

I/4.4

 +

0.44

 

AD

I/3.5

 

0.56

   =  =  = 32.26kN/m  w-at 1 m from base

   =  =  = – 20.41

c 

Maximum simply supported BM for longer span

   =  =  = 48.4 kN.m

  Net BM = 48.4 – 27.06

  At centre =  21.34kN.m

For shorter span :

  Maximum S. S. BM =  =  = 30.625 kN.m

  Net BM at centre = 30.625 – 27.06 = 3.57 kN.m

  The pull in longer wall = 

  TL =  =  = 35 kN

8384 

 

Fig. P. 5.7.1(B)

  Pull in short wall =  =  = 44 kN

Thickness of wall :

1. Minimum thickness = 100 mm

2. (30 mm per meter depth of water) + 50 = (30 3) + 50 = 140 mm

3. 60 mm per meter length of water = 60 4.4 = 264 mm

  Take greater value = 264 mm

  Assume t = 300 mm

 

85Design of wall to direct tension and moment :

  x = Eccentricity of T  

  x = 150 – Efficiency cover

   = 150 – 40 = 110 mm = 0.11 m  

 

 

 

 

 Efficiency cover  = Clear cover +  = 30 +  = 40 mm

For longer wall  Net BM = M – TL x 

  (at mid span) = 21.35 – 35 0.11 = 17.50 kN.m

  And at junction = M – TL x = 27.06 – 35 0.11 = 23.2 kN.m

For shorter wall

  Net BM= m – TB x               (mid span) = 3.57 – 44 0.11 = – 1.27 kN.m

 Negative sign indicate tension on water face

 At junction = M – TB x =   27.06 – 44   0.11 = 22.22 kN.m

 

Check for depth :

  M = f  Z

  f = cbt for M20 cbt= 1.7 N/mm2

  Z =  

  b =1000 mm = 1 m

  Mr =   D = t = ?

Equating maximum BM to Mr

 Maximum BM = 23.2 106  N.mm

  23.2 106 = 

 D = 286 < 300 mm …OK

 Assuming    D = 300 mm 

  d = 300 – 30 –  = 260 mm

 

Area of steel at junction :

1. Ast in shorter wall at junction

  Ast =  +  =  +  = 1236.9 mm2

 For Fe 250st =  115 N/mm2

 M20 and Fe 255

  J = 0.87

Ast(read) in long wall at junction

  Ast =  +  =  +

    = 1207.74 mm2 (1211.5)

Ast (min) :

5_Q_4_12  = 0.2 + (450 – 300)

 Ast min = 0.24 % of Ag

  =  1000 D = 1000 300

  = 720 mm2    Fig. P. 5.7.1(D)

 Assuming 16 mm bars                                                                 

  Spacing =  = 162 = 160 mm c/c

Providing 16 mm bar at the spacing 160 mm c/c horizontally. In the depth from 1 m up to 2 m above the base at the junction in the long and short wall for a distance 0.25 l from the support.

Since the water pressure decreasing towards the top area of steel above 2 m from base =  = 618 mm2 Ast (min). = 720 mm2.

Assuming 12 mm bar

  Spacing=  150 mm c/c

Providing 12 mm bar @ 150 mm c/c in the top 1.2 m height of the wall.

Ast in centre of span :

1. In shorter wall :

  Ast =  +

   =  +  = 431.62 < Ast (min)

  Provide Ast = 720 mm2

Providing 12 mm bars

  Spacing =   = 150 mm c/c

Providing 12 mm bars @ 150 mm c/c

2. Longer wall :

  Ast =  +

   =  +  = 977.08 < Ast (min)

Assuming 16 mm bars  

  Spacing =  200 mm c/c

Distribution steel

  (Ast)min =  1000 D = 1000 300 = 720 mm2

 On each face =   = 360 mm2

Assuming 8 mm bar  

  Spacing =   = 130 mm c/c

Design of bottom 1 m height :

 Pressure intensity at base = wH = 10 3 = 30 kN/m2

Cantilever moment at the base

87   =  30 1 = 5 kN.m 

  Ast =  =

   = 192.21 < Ast (min) Fig. P. 5.7.1(E)

 Provide Ast  = 720 mm2

Steel on each face  =   = 360 mm2

 Providing 10 mm @ 210 mm c/c on both faces.

Base slab :

 The water tank is resting on ground providing 150 mm thick slab.

  Ast = 0.3 % of Ag = 1000 150 = 450 mm2

 On each face =  = 225 mm2

Assume 8 mm bars

  Spacing =  220 mm c/c

 

 Q8) Discuss in brief how to decide geometry of Intze tanks.A8)

(1) Height to diameter ratio  = 0.4

(2) Around 10% of total capacity is because of bottom conical portion. Hence the capacity of vertical container can be equivated with 90% of capacity to have H and D.

(3) Diameter of top dome = diameter of container.

(4) Risk of top dome is 0.1 to 0.2 time dia.

(5) Height of conical dome = rise of top dome. It can be equal to

37 

Bottom dome :

It is approximately 50% m diameter compare to diameter of top dome.  Rise

of bottom dame is kept somewhat greater approximately 20 to 25% of bottom dome diameter.

Volume of tank

 (1) Capacity of cylindrical portion =  D2H  

(2) Capacity of Bottom conical dome

   =  Fig. A Typical Intze tank

 

(3) Capacity of bottom dome =  (3r2 + h2) h 

(4) Total capacity = (1) + (2) – (3)

 Q9) An Intze tank is to be provided for 1000 KJ capacity. Determine the dimensions of all the components of the tank.                  A9) 

Capacity of tank=1000 k J = 1000 103liters = 1000 m3

  cbc = 8.5 N/mm2, st = 150 N/mm2 , m = 11

  ct = 1.3 N/mm2, cc = 6 n/mm2, n = 0.384, j = 0.872

  K = 1.423

Dimensions of tank :

 Let the diameter of cylindrical portion=D

 Diameter of bottom ring girder =0.6D

 Height of conical shell h3= 0.2D

 Height of bottom spherical dome=

The volume of tank

  V = Volume of cylindrical portion + Volume of conical portion

    – Volume of bottom spherical dome portion

   =  D2 h2 + h3  (3R2 – h4)

  D1 = 0.6D, h2 = 0.4D, h3 = 0.2D, h4 =

 Radius of bottom dome R2 is

   = 0.36  = 0.09D2

   R2 = 0.386 D

   V = D2 0.4D + (D2 + 0.36D2 + 0.6D2)
     

   = 0.374 D3

    0.374 D3 = 1000

   D = 13.88 m

  Let  D = 14 m, D1 = 0.6D = 0.6 14 = 8.5 m

  h2 = 0.4D = 0.4 14 = 5.5 m

  h3 = 0.2D = 2.8 m

  h4 =  = 2 m

Actual volume of tank

 2 (2R2 – 2)  =   R2 = 5.52 m

  V =  142 5.5 + 2.8 (142 + 8.52 + 14 8.5)

     22 (3 5.52 – 2)

  = 1069 m3

 

10 




Fig. Dimensions of Intize Tank

 Q10) The inner dimensions of an Intze tank are as shown in figure. Design top dome, top ring beam and side wall. Use M25 concrete and Fe-415 grade steel. A10)

 

114 

 

 

Fig. **

Design of Top dome :

  Diameter  =  13 m

  Let rise  =  1/7 13 = 1.86 m

 Radius of spherical dome – 2 (2R1 – 2) = 6.52 R1 = 11.56 m

 Semi-central angle    = cos– 1= 34.21

 Let the thickness of dome= 75 mm

 Self weight = 0.075 1 1 25 = 1.875 kN/m2

 Live load = 1.5 kN/m2

 Total = 3.375 kN/m2 4 kN/m2

 Meridoinal thrust    T1 = w R1= = 25.31 kN/m

 Meridoinal stress =  = 0.34 N/mm2< 6 N/mm2 O.K.

 Circumferential force = T2 = wR1

  = 4 11.56 = 12.93 kN/m

   Circumferential stress=  = 0.172 N/mm2 < 6 N/mm2 O.K.

 Provide nominal reinforcement of 0.3 % in circumferential and radial direction.

  Ast =  75 1000 = 225 mm2             

 Using 8mm bars, S =  1000 = 223 mm

Provide 8mm bars at 200 mm c/c in radial and circumferential directions.

Design of Top Ring (Beam A–A) :

 Hoop tension = T1 cos = 25.31 cos 34.21 = 136.05 kN

  Ast =  = 907mm2

Provide 5 bars of 16mm diameter

    Astprovided = 5 162 = 1005.31 mm2

Area of concrete :

  1.3 =  =

    Ac = 93595.44 mm2

  Assume b = 300mm

Provide 300 350 mm top ring beam with 5 bars of 16mm (2 at top and 3at bottom). Also provide nominal shear reinforcement of 6mm bars @ 300mm c/c.                           

Design of side wall :

Hoop tension at base of tank = 9.8 5.5 = 350.35 kN

  Ast =  = 2335.67 mm2

Use 16 mm bars on each face

  s =  1000= 172.16 mm

Provide 16 mm bars on each face @ 170 mm c/c

 Ast provided = 2 162 = 2680 mm2/m height

Area of concrete :

  1.3 =  =

   Ac  = 240020 mm2 /m height

   t =  = 240.02 mm

  Provide t = 250 mm

Distribution steel :

  P = 0.3 – 0.1 = 0.25

Area of distribution steel required = 275 1000 = 687.5 mm2

Area of distribution steel required on each face = 687.5/2 = 343.75 mm2. Use 8 mm bars.

  S =  1000 = 146 mm

Provide 8 mm bars@ 140 mm c/c on each face.

 Hoop tension = 9.8 3.5 = 222.95 kN/m

 Ast =  = 1486.33 mm2

 Aston each face = 743.17 mm2

Use 12 mm bars

  S =  1000 = 152.18 mm

Use 12 mm bars @ 150 mm c/c on each face.