Back to Study material
MOS

Unit - 6

Slope and Deflection of Beams and Trusses

 

Q1) Explain slope and deflection method of determinate beam by Macaulay’s Method.

A1) Slope and Deflection of determinate beam by Macaulay’s Method

1. Determinate Beam: the determinate beam is that the beam in which unknown support reactions can be calculated by using static equilibrium equations only.

Example: simply supported beams, cantilever beams, single and double overhanging beams.

2. Slope and Deflection of beams

Macaulay’s method

(Double ∫∫ method)

(Integration)

3. Basics:

1. Elastic curve: Deformed shape of beam is called as elastic curve.

C:\Users\TARUNA\Desktop\internship\february\11 feb2020\53.JPGC:\Users\TARUNA\Desktop\internship\february\11 feb2020\54.JPG

2. Slope: Angle made by tangent joint to the elastic curve with x-axis is called as slope.

3.  Deflection: Translation of cross-section normal to the longitudinal axes of member is called as deflection.

C:\Users\TARUNA\Desktop\internship\february\11 feb2020\55.JPG

4. Reference System:

Left end of beam is taken as origin and reference system is as below.

C:\Users\TARUNA\Desktop\internship\february\11 feb2020\56.JPG

5. Sign conventions:

(A). Slope

ϴ + dy/dx = Anticlockwise rotation of tangent

dy/dx = clockwise rotation of tangent

(B) Deflection

+y = upward Deflection

-y = downward Deflection

6. Flexural Rigidity = (EI)

Product of young modulus of elasticity and moment of inertia of cross-section is called as Flexural rigidity (FI).

Unit: KN.m2

Note: Slope and deflections are inversely proportional to FI.

7. Boundary conditions:

These are nothing but support conditions.

i)                   At fixed end:

C:\Users\TARUNA\Desktop\internship\february\11 feb2020\57.JPG

 


 

                   dy/dx = 0

                            y = 0

ii)                 At hinged and roller end

C:\Users\TARUNA\Desktop\internship\february\11 feb2020\58.JPG

 

Q2) Write boundary conditions for following beams

A2)

1) C:\Users\TARUNA\Desktop\internship\february\11 feb2020\59.JPG

At x = 0; yA = 0

x = 4m; yB = 0

2)C:\Users\TARUNA\Desktop\internship\february\11 feb2020\60.JPG

At x = 0; yA = 0

x = 3m; yB = 0

3)C:\Users\TARUNA\Desktop\internship\february\11 feb2020\61.JPG

At x = 2m; yB = 0

At x = 5m; yC = 0

C:\Users\TARUNA\Desktop\internship\february\11 feb2020\62.JPG

 

At x = 0; {dy/dx}A = 0

X = 0; yA = 0

 

Q3) Explain bm equation and concept of Macaulays Method.

A3) Concept of Macaulay’s Method

We have,

M/I = 6/y = E/R

Where; R = Radius of curvature

                   = {1 + (dy/dx)2 }3/2 / d2y/dx2

For beams values of dy/dx are very small

R ≈ 1/d2y/dx2

M/I = E/R, E/1/d2y/dx2 = Ed2y/1 x dx2

M/I = Ex (d2y/dx2)

M = EI.d2y/dx2 =  - - - - F(x) = BM eqn

ϴ = EI (dy/dx) = ----------- +c1 = slope eqn

Deflection EI(y) = --------- + C1(x) + C2 = Defneqn

                                  ‘’                 (Eqn of elastic curve)

B.M equations:

Note:

For writing BM equation always consider section at a distance x from origin, placed in right extreme zone.

  • Case 1
  • C:\Users\TARUNA\Desktop\internship\february\11 feb2020\63.JPG

    EI (d2y/dx2) = BMx = R1(x) | - P(x-a) | - Q(x-b)

  • Case 2
  • C:\Users\TARUNA\Desktop\internship\february\11 feb2020\64.JPG

    EI (d2y/dx2) = BMx = R1x | - w(x-a)2/2

    EI (d2y/dx2) = BMx = R1(x) | - wx2/2 | + w(x-a)2/2

  • Case 3 :
  • C:\Users\TARUNA\Desktop\internship\february\11 feb2020\65.JPG

    EI(d2y/dx2) = BMx = R1(x) | - M(x-a)

     

    Q4) E = 200 GPa = 200 x 103MPa / N/mm2 = 200 KN/mm2

    I = 3 x 108 mm4

    EI = 200 x 3 x 108 KNmm2

    EI = 600 x 102 KNm2

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\67.JPG

    A4) Reactions,

    ∑MA = VB(6) – 90 x 2 – 120(4) = 0

    VB = 660/6

    VB = 110 KN

    Fy = VA + VB – 90 – 120 = 0

    VA = -110 +90+120

    VA = 100 KN

    Fx = HA = 0

     EI (d2y/dx2) = 100(x) | - 90(x-2) | -120(x-4)     ---(1)

    EI (dy/dx) = C1 + 100x2/2 | - 90(x-2)2/2 | -120(x-4)2/2    ---(2)

    EI(y) = C1(x) + C2 + 100x3/6 | - 90(x-2)3/6 | -120(x-4)3/6  ---(3)

    Boundary conditions:

    At x=0 | yA = 0,      put in (3)

    C2 = 0

    At x = 6m, yB = 0,     put in (3)

    6C1 + 100 x 36 – 90 x (4)3/6 – 120 x 23/6 = 0

    6C1 + 3600 – 960 – 160 = 0

    6C1 = -2480

    C1 = (-) 413.33

    Slope &Deflection:

    X = 0,   in (2),

    (dy/dx)A = (-) 413.33/EI = (-)4133.33/600 x 102

    = 6.88 x 10-3 rad(     )

    X = 6m in (2),

    EI(dy/dx)B = (-)413.33 + 100(6)2/2 – 90(4)2/2 – 120 x (2)2/2

    = - 413.33 + 1800 – 720 – 240 = 426.67

    (dy/dx)B = 7.11 x 10-3rad(    )

    X = 2m in (3),

    Yc = -413.33 x 2 + 100 x 23/6

         = - 826.66 + 133.33

         = -693.22/EI = -693.32/600 x 102 = -11.55

    Yc = -11.55 mm(    )

    X = 4m in (3)

    yD = -413.33 x 4 + 100 x 43/6 – 90 x 23/6

         = -706.6/EI = -706.6/600 x 102

         = - 11.77 mm

    yD = 11.77 mm(  )

     

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\68.JPG

    For maximum deflection

    Let X > 2m

    < 4m           - zone CD

    EI(dy/dx)CD = - 413.33 + 100/2x2 – 90(x-2)2/2 = 0

    -413.33 + 50 x2 – 45(x-2)2 = 0

    -413.33 + 50x2 – 45(x2-4x+4) = 0

    -413.33 + 5x2 + 180x – 180 = 0

    5x2 + 180x – 593.33 = 0

    X = 3.03 >2m

    <4m

    Assumption is correct.

    X = 3.03m in (3)

    Ymax = -413.33 x 3.03 + 100(3.03)3/6 – 90 x (3.03-2)3/6

            = -1252.38 + 463.63 – 16.39

            = - 805.14/EI

     

    Q5) EI = 4 x 104 Kn.m2

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\69.JPG

    A5) Reactions:

    ∑MA = 0

    VB x 6 – 20 x 3 x x 1.5 – 60 x 4 = 0

    VB = 55KN

    Fy = 0

    VA + VB – 60 – 20 x 3 = 0

    VA = 65 KN

     

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\70.JPG

    EI (d2y/dx2) = 65 x x | - 20 x x2/2 | + 20 x (x-3)2/2 | - 60(x - -(1)

    EI {dy/dx} = C1 + 65x2/2 | - 20 x x3/6 | + 20(x - 3)3/6 | - 60(x - 4)2/2   - - (2)

    EI(y) = C1(x) + C2 + 65x3/6 | - 20 x x4/24 | + 20(x-3)4/24 | -60(x-4)3/6  --(3)

    Boundary conditions:

    At x=0, yA = 0,   put in (3)

    C2 = 0

    X = 6m, yB = 0 put in 3

    C1 x 6 + 65 x 62 – 20 x 63/4 + 20 x 34/24 – 60 x 23/6 = 0

    C1 = -207.91

    Slope &deflection:

    X = 3m in (2)

    (dy/dx)c = -207.91 + 65 x 32/2 – 20 x 33/6 = -5.41/EI

                     = -1.35 x 10-4

    (dy/dx)c = 1.35 x 10-4 rad(    ) 

    X = 3m in 3

    yC = -207.9 x (3) + 65 x (3)3/6 – 20 x 34/24 – 398/EI

         = - 9.967 x 10-3

         = -9.967mm

    yC = 9.967 mm(   )

    x = 4m in (3)

    yD = -207.9 x 4 + 65 x 43/6 – 20 x 43/24 + 20/24

         = - 350.7/EI

         = 8.76 mm (   )

    Q6) EI = 32.5 x 103 Kn.m2

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\71.JPG

    A6) Reactions:

    ∑MA = 0

    VB (5) – 45 x 3 x 1.5 + 30 = 0

    VB = 34.5 KN

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\72.JPG

    EI {d2y/dx2} = 100.5 x x – 45x2/2 | + 45 x (x-3)2/2 | -30(x-4)0    -- (1)

    EI {dy/dx} = C1 + 100.5x2/2 – 45x3/6 | + 45 x (x-3)3/6 | - 30(x-4)   --(2)

    EI(y) = C1(x) + C2 + 100.5x3/6 – 45x4/24 | + 45 x (x-3)4/24 | - 3(x-4)2/2   --(3)

    Boundary conditions:

    At x=0; yA = 0   put in eqn3

    C2 = 0

    At x=5; yB = 0

    5C1 + 100.5 x 53/6 – 45(5)4/24 + 45(2)4/24 – 30/2 = 0

    C1 = (-) 187.375

    Slope &Deflection:

    X=3m in (2)

    (dy/dx)c = -187.375 + 100.5 x 32/2 – 45(3)3/6

                     = 62.375/32.5 x 103

    (dy/dx)c = 1.919 rad(     )

    X = 3m in (3) 

    yC = -187.375 x 3 + 100.5 x 33/6 – 45 x 34/24

         = - 261.75/32.5 x 103

         = - 8.053mm

    yC = 8.053mm(   )

    x = 4m in (3)

    yD = -187.375 x 4 + 100.5 x (4)3/6 – 45 x (4)4/24 + 45/24

         = - 155.625/32.5 x 103

         = - 4.78 mm

    yD = 4.78 mm(    )

     

    Q7) E = 200 GPa

    I = 6.2 x 107mm4

    EI = 200 x 6.2 x 107 KN.mm2

    = 200 x 6.2 x 107 x 10-6 KNm2

    EI = 12400 KNm2

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\73.JPG

    A7) Reactions:

    ∑MA = 0

    VB x 4 – 25 – 37(2)(3) – 60(6) = 0

    VB = 151.75 KN

    VA + VB – 60 – 37 x 2 = 0

    VA = (-)217.75 KN

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\74.JPG

    EI {d2y/dx2} = -17.75 x | + 25(x-1)0 | - 37 x (x-2)2/2 | + 151.75(x-4)2/2 | + 37 x (x-4)2/2   --(1)

    EI {dy/dx} = C1 – 17.75x2/2 | + 25(x-1)| - 37(x-2)3/6 | + 151.75(x-4)2/2 | + 37(x-4)3/6   --- (2)

    EI(y) = C1x + C2 – 17.75 x3/6 | +25(x-1)2/2 | -37(x-2)4/24 | + 151.75(x-4)3 | + 37(x-4)4/24      ---(3)

    Boundary condition:

    At x=0; yA=0 C2 = 0 (in eqn (3))

    At x=4;yB=0  put in eqn(3)

    4C1 – 17.75 x 43/6 + 25 x 32/2 – 37 x 23/6 = 0

    C1 = 25.4

    Slope and deflection:

    X = 2m in (2) & (3)

    (dy/dx)D = 25.4 –17.75 x 2 + 25

                     = 14.9/EI

    (dy/dx)D = 1.201 x 10-3rad(     )

    yD = 25.4 x 2 – 17.75 x 23/2 + 25/2

         = 39.63/12400

    yD = 3.196 mm(     )

    x = 6m in (2) & (3),

    (dy/dx)E = 25.4 – 17.75 x 62/2 + 25 x 5 – 37(4)3/6 + 151.75(2)2/2 + 37 x 23/6

                     = -210.183/12400

                     = 0.017 rad(     )

    YE = - 341.7/12400 = 27.5mm

     

    Q8) Find strain energy?

    D:\MY DOCUMENTS\internship\february\11 feb2020\127.JPG

    A8) ∑MA = 0

    30 x 2 – RB x 4 = 0

    RB = 15

    VA = VB = 15 KN

    BMC = BMD = 15(1) = 15 KN.M

    BMC = 15(2) = 30 KN.M

    D:\MY DOCUMENTS\internship\february\11 feb2020\128.JPG

    ‘M/EI’ Dia.

     C.B

    D:\MY DOCUMENTS\internship\february\11 feb2020\129.JPG

    A1 = 1 / 2 x 1 x 15/EI = 7.5/EI

    A2 = 2 x 7.5/EI = 15/EI

    A3 = 1 /2 x 2 x 7.5/EI = 7.5/EI

    A4 = 1 / 2 x 15/EI x 1 = 7.5/EI

    Analysis of conjugate beam

    ∑MA = -RB (4) + 1/EI {7.5(2/3 x 1) + 15(2) + 7.5(2) + 7.5(3 + 1/31)} = 0

             = - RB x 4 + 1/EI [5 + 30 + 15 + 25 ] = 0

    RB x 4 = 75/17250

    RB = 18.75/EI

    fy = 0

    -RA + RB + A1 + A2 + A3 + A4 = 0

    RA = 18.75/EI

    RA = RB = ½{A1 + A2 + A3 + A4} = 18.75/EI

    Slope & Deflection

    (ϴA)R.B = (SFA)C.B = (-)18.75/EI

                = 18.75/EI xC = 1.086 x 10-3rad xC

    (ϴB)R.B = (SFB)C.B = 18.75/EI xC = 1.086 x 10-3 rad xC

    (ΔE)R.B = (BME)CB

    D:\MY DOCUMENTS\internship\february\11 feb2020\130.JPG

     

    (BME)CB= 1/EI { -18.75 + 7.5(1 + 1/3 x 1) + 7.5(0.5) + 3.75 (1/3 x 1)}

                  =1/EI{-22.5}

    ΔE = 22.5/EI xC = 1.304 mm xC

     

    Q9) Find ϴC&ΔC= ?

    Real Beam:

    D:\MY DOCUMENTS\internship\february\11 feb2020\131.JPG

    A9) BMD:

    BMA = -25(1) – 25(2) = -75KNm

    BMB = -25(1) = -25KNm

    BMC = 0

    D:\MY DOCUMENTS\internship\february\11 feb2020\132.JPG

    A1 = 25/EI x 1 = 25/EI

    A2 = 1/2 x 1 x 25/EI = 12.5/EI

    A3 = 1 / 2 x 50/EI x 1 = 25/EI

    D:\MY DOCUMENTS\internship\february\11 feb2020\133.JPG

    Conjugate beam:

    D:\MY DOCUMENTS\internship\february\11 feb2020\134.JPG

    When force downward reaction is upward & when moment is clockwise in conjugate beam the moment is anticlockwise.

    Fy = RC – 1/EI{25 + 12.5 + 125} = 0

    RC = 62.5/EI

    ∑MC = - MC + 1/EI{25(1.5) + 12.5(2/3) + 25(1 + 2/3)} = 0

    MC = 87.5/EI

    Slope & Deflection

    ϴC at Real Beam

    (ϴC)RB = (SFC)C.B

               =(-)62.5/EI

      ϴC   = 62.5/EI (    )

    (ΔC)RB = (BMC) CB

    ΔC = (-) 87.5/EI

    ΔC = 87.5/EI (   )

     

    Q10) Find: ϴA, ϴBand Δ centre= ?

    Real Beam:

    D:\MY DOCUMENTS\internship\february\11 feb2020\135.JPG

    A10) BMD: VA = VB = 20 KN

    BMA = BMB = 0

    BMC = BMD = 20 x 2 = 40 KNm

    D:\MY DOCUMENTS\internship\february\11 feb2020\136.JPG

    A1 = 40/EI = A3

    A2 = 160/EI

    Conjugate beam:

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\18.JPG

    Reactions of CB:

    RA = RB = ½(A1 + A2 + A3)

          = 1/2EI (40 + 160 + 40 )

          = 240/2EI

         = 120/EI

    Slope &Deflection:

    (ϴA)RB = (SFA)CB = (-)120/EI

           ϴA = 120/EI (    )

    (ϴB)RB = (SFB)CB = (+)120/EI

           ϴB = 120/EI (    )

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\17.JPG

    Shear force is zero -> Maximum BM(C.B)

    BME = 40/EI x (2 + 1/3) + 80/EI(1) – 120(4)

            = (-) 293.3/EI

    ΔE   = 293.3/EI (   )

     

    Q11) Propped cantilever and fixed beams by strain energy method

    10

    A11)

    A1 = 2 x wl2 x 12  = 2 x 30 x 122 x 12   = 4320 mm2

             3                              3            8

     

    x1 = l1  = 12  = 6  = 6m

             2       2

     

    A2 = 1 x wab x 12  = 1  x   240 x 4 x 8   x   12   = 3840 mm2

             2                              2                12

     

    x1  = l2 = 12 = 6m    x1 =  L + a     x2 = l +b

    2             2                                                                 3                   3 

     

    Q12) Explain the procedure of displacement by Castiglione’s theorem.

    A12) It states that displacement at a point of application of load in the direction of load is equal to partial derivative of strain energy of structure with respect to load.

    1]. ӘU/ӘQi = Δj

    U = strain energy

    Qj = Force in the direction j

    Δj = Displacement in the direction j

     

    2]. Strain energy: Uaxial force = ∫L0P2dx/2EA

    UB.M = ∫L0M2dx/2EI

    U Torsion = ∫L0T2dx/2GJ

    Deflection = translation

     

    3]. Procedure of displacement analysis by Castiglione’s theorem:

    Step 1:

    Apply imaginary load ‘Q’ at section where displacement is required.

    Note:

    1]. For horizontal translation apply

     ‘Q’ in horizontal direction

    For vertical translation apply force Q in vertical direction

    2]. For finding ‘slope’ (rotation) apply couple Q.

    Step 2:

    Find support reactions and draw member F.B.D’s

    Step 3:

     Prepare table:

    Zone origin limits EI M ӘM/ӘQ

    Step 4:

    Find displacement using Δj = L0M/EI{ӘM/ӘQj} dx

    Find ΔB :

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\15.JPGC:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\16.JPG

    Zone Origin Limits EI M ӘM/ӘQ

    BA B 0 to L EI –Q(x) – W(x2/2) -x

    ΔB = L0 M/EI(ӘM/ӘQ)dx = ∫L0{-W(x2/2)}(-x)dx

         = W/2EI{x4/4}L0

    ΔB = WL4/8EI (    )

     

    Q13) Find Vertical deflection at ‘c’,

    EI = constant

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\14.JPG

    A13) M Diagram

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\13.JPG

    From above Fig:

    Table

    Zone    Origin  limits  EI  M     ӘM/ӘQj

    CB                   C                      0-2               EI        -(80 + Q)x           - x

    BA                   C                     2-5                   EI        -(80 + Q)x          - x-60(x-2)             

    ΔC = 20-(80)x/EI {-x}dx + ∫52{80x – 60(x-2) (-x)dx/EI}

         = ∫2080x2/EIdx + ∫52{80x2 – 60x2 + 2x}dx/EI

         = 1/EI {213.33 + 4200}

    ΔC = 4413.33/EI (    )

     

    Q14) Find deflection at ‘C’

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\12.JPG

    A14)

    M Diagram

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\11.JPG

    Zone   Origin     Limit         EI  M       ӘM/ӘQ

    CB          C        0 – 2          EI   - (100 + Q)x                     -x

    BA      C                        2 – 4                   EI            -(100 + Q)x                      -x

     

    ΔC = 20 – 100x/EI(-x)dx + ∫42 -100x/EI(-x)dx

         = ∫20100x2/EIdx + ∫42100x2/2EIdx

         = 266.66 + 1866.6/2

         = 266.66 + 933.33

    For cantilever always write load from free end. For simply write load from supports.

    ΔC = 1200/EI

     

    Q15) Find slope at ‘A’, deflection at ‘C’.

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\10.JPG

    A15)

    M Diagram

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\9.JPG

    Reaction M dia.

    ∑MA = VB 6) – 20 x 6 x 3 – 60(2) – Q = 0

    VB = 80 + Q/6

    Fy = VA + VB – 60 – 20 x 6 = 0

    VA = 100 – Q/6

    Zone    Origin   limits  EI  M       ӘM/ӘQ

    AC         A     0 – 2  EI     (100-Q/6)(x) 1 – x/6+ Q   – 20(x2/2)              

    BC              B                  0 – 4           EI      (80+Q/6)(x)-20x2/2            x/6

     

    ϴA = ∫20{100(x) – 10x2}{1-x/6} dx/dEI + ∫40{80x – 10x2}x/6dx/EI

          = 1/EI{135.55 + 177.78}

    ϴA = 313.32/EI(    )

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\8.JPG

    ∑MA = VB (6) – 20(6)(3) – (60 + Q)2 = 0

    VB = 80 + Q/3

    Fy = VA + VB – (60 + Q) – 20(6) = 0

    VA = -80 – Q/3 + 60 + Q + 120 = 0

    VA = 100 + 2/3Q

     

     

    Q16) Find deflection at ‘C’

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\7.JPG

    A16)

    i)                   M Diagram

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\6.JPG

     

    Zone Origin  Limit     EI  M                  ӘM/ӘQ

    AC               A                       0 – 2                     EI          (25 + Q/2)x                    x/2

    BC               B                       0 – 2                      EI          (25 + Q/2)x                   x/2

    ΔC = 20(25x)x/2dx/EI + ∫2025x(x/2)dx/2EI

         = 33.33 + 16.66/EI

    ΔC = 50/EI(     )

     

    Q17) Find deflection at D

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\5.JPG

    A17)

    ∑MA = MA – (10+Q)(1) = 0

    MA = 10 + Q

    Fy = VA – (10 + Q) = 0 VA = 10 + Q

    Fx = HA = 0

    C:\Users\TARUNA\Desktop\internship\february\11 feb2020\last\4.JPG

     

    Zone origin limits                 EI        M    ӘM/ӘQ

    AB               A              0 – 2                     2EI                        (10+Q)x-(10+Q)                 x-1

    CB              C               0 – 1                      EI                            -(10 + Q)                          -1

    DC              D               0 – 1                      EI                           -(10 + Q)x                      - x

     

    ΔDy = 2 0(10x - 10) (x-1)dx/2EI + ∫10 -10(-1)dx/EI + ∫10 -10x(-x)dx/EI

           = 3.33 + 10 + 3.33/EI

    ΔDy = 16.66/EI (       )