Back to Study material
SA

Unit - 4

Moment Distribution Method

Q1) What is moment distribution method-stiffness factor, carryover factor and distribution factor?

A1) Moment distribution method:

Moment Distribution Method (MDM) is an iteration procedure developed by Cross Hardy in 1930. Therefore, this method is sometimes called as the 'Cross Hardy Method'.

This method starts with the assumption that all points in an indeterminate structure are fixed temporarily against rotation and displacement.

The fixed end moment (FEM) induced by the loading on the spans are written down at each joint.

Then, the joint is released one at a time in succession. Because of the release of joints, unbalanced moments arise at the joints.

These unbalanced moments distributed at the joints in proportion to the stiffness of the members meeting at the joints.

Then these distributed moments are carried over to the far end of the members. Because of the carry-over moments at joints, again unbalanced moments are created which are further distributed and carried over.

 In this manner the iteration is performed in successive cycles of operation till the value of joints becomes significant. At this stage, iteration is stopped and the moments at each joint is algebraically summed up.

The sum of the moments at the end of each span at a joint is the required final end moment.

MDM method is quite different than slope deflection method though it is a displacement or stiffness method. Without calculating values of displacement end moments are obtained by successive iteration.

Stiffness factor

It is ratio of moment of inertia to the length of the beam is called stiffness factor of beam.

Moment required to rotate an end by a unit angel when rotation is permitted at that end is called stiffness of the beam

Stiffness of the beam AB=

Types of far end support

K

  1. If far end is fixed or continuous support

I/L

2.     If far end is simply supported Roller support, Internal hinged and overhang

3I/4L

Carry over factor:

It is defined as the ratio of moment developed at far or adjacent end of the moment applied at the near end.

The ratio of carryover moment to applied moment is called carry-over factor.

Carryover factor=

Types of toes and support

Fixed support ½

Intermediate support ½

Rigid joint ½

Roller hinged, internal 0

Overhanging 0

If for the end is fixed 1/l

If for the end is simply roller internal hinged, I overhung 3I/4L

Distribution factor

It is ratio of the stiffness of member to the total stiffness of the joint where all the members are meeting.

A moment which tends to rotate without translation a joint to which several members are connected will be divided amongst connected member in proportion to their stiffness.

Distribution factor (DF)

Thus, distribution factor is the ratio of the stiffness of member to the total stiffness of the joint where all members are meet.

 

Examples: To find stiffness

  • By conjugate method to find stiffness.
  • Then consider at the B end

    Carryover factor =

    Put                                                               

    Distribution factor =>

     

    Q2) Write down application of MD method to continuous beam with fixed ends?

    A2) Application of MD method to continuous beam with fixed ends: -

  • Assuming all ends are fixed, find fixed end moments
  • Calculate the distribution factor for all member meetings at the joint.
  • Balance a joint by distributing a balancing moment.
  • Carryover half the distributed movement to the far end of the members.
  • Repeat step 3 and step 4 till distributed moments are negligible.
  • Sum up all the moments at a particular end of the members to get the final moment.
  •  

    Q3) Write down producer of analysis of moment distribution method?

    A3) Steps for analysis of moment distribution method

  • Find fixed end moment
  • Find the distribution factor
  • Draw moment distribution table
  • You get final moments
  • Draw BMD&SFD
  • Distribution factor is=

    K=stiffness -it depends on the support condition.

    1. Far end fixed &intermediate support =

    2. The far end simply supports =

    COF - support

    O - Simply support

    ½ - fixed

    ½ - intermediate

     

    Q4) Analyze the given beam by M.D. method (10 marks item)

    AB=>

    A4) Step 1) Fixed end moment

    Step 2) Distribution factor

    Draw distribution table

    1)     Draw distribution table

    Joint

    Member

    K

    B

    BA

     

     

    BC

     

    0.4

     

     

     

    0.6

     

    2)     Moment distribution Table

    0.4

    0.6

    Member

    AB          BA

    BC                                           CD

    Fixed end

     

    balancing

    120                               - 120

     

       42

    15                                            -15   

     

     63

    COF

     

    Balancing

    21              0

                                                       0

    31.5

       Final moments                     

     

    141                                  -78

    78                                       16.5

     

     

     

     

    Step 4) Draw SFD and BMD

    SFD

    BMD

     

    Q5) Analyze the given beam ABCD by moment distribution method?

    A5) Step 1) Find fixed moment

    KNM

                                                                   KNM

                                KNM

                                                              KNM

                                                              KNM

    Step 2) Distribution factor

    JOINT

    MEMBER

    K

    B

    BA

     

     

     

    BC

     

     

     

     

     

    5EI

    0.2

     

     

     

     

    0.8

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

    4.5EI

    0.89

     

     

     

     

    0.11

     

    3)Moment Distribution Table

    0.2

    0.8

     

    0.89

    0.11

    Members

    AB                      BA

    15                     -15

     

     

    BC                              CB

    13.33                        -13.33

     

     

    CD                   DC

    8.89            -4.44

     

    2.22           + 4.44

    Fixed End

     

    Balancing

    Initial Moments

     

    Balancing

    15                       -15

     

     

                           0.331

    13.33                      -13.33

     

     

    1.34                           1.98

    11.1                    0

     

     

    0.25

    COF

     

    Balancing

    0.165             

     

                           -0.19

     

     

    0.99                           0.67

     

    -0.79                          -0.59

     

     

    -0.07

    COF

     

    Balancing

    -0.09

     

                          0.058

    -0.29                        -0.39

     

    0.22                          0.34

     

     

    0.04

    Final Moments

    15.075         -14.801                              

     

     

    14.8                         -11.32              

    11.32                  0

     

    KNM

    KNM

    KNM

    KNM

    KNM

    KNM

    Step 4) Draw BMD

     

    BMD

     

    Q6) Analyze the given beam by M.D. method

     

    A6) Step 1) Find fixed end moment

    Step 2) Distribution Factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

    2.5 EI

    0.2

     

     

    0.8

    C

    CB

     

     

    CD

     

     

    0.66

     

     

    0.33

     

    Moment distribution table

    0.2

    0.8

     

    0.66

    0.33

    Members

    AB                      BA

    BC                              CB

    CD                   DC

    Fixed End

     60                    -60

     

    -60                    -30

     

    30       -30

     

     

    13.33              -6.66

     

    3.33               +6.66

     

     

    Balancing

    Initial Moments

     

    Balancing

    0                                                   - 90

     

     

                                    12

    30                             -30

     

     

    48                              8.8

    16.66             0

     

     

    4.40

    COF

     

    Balancing

     

     

                                -0.88

    4.4                             24

     

    -3.52                        -15.84

     

     

    -1.92

    COF

     

    Balancing

     

     

                              1.58

    -7.92                        -1.76

     

    6.33                          1.16

     

     

    0.58

    COF

     

    Balancing

     

     

                              - 0.11

    0.58                           3.16

     

    -0.46                         -2.08

     

     

    -1.04

    COF

     

    Balancing

     

     

                               0.20

    -1.04                       -0.23

     

    0.83                         0.15

     

     

    0.07

    Final Moments

    0                     -77.21

    77.21                         -12.64

    12.75               0

     

    Step 4) Draw BMD

    BMD

     

    Q7) Analyze the given frame by MD method

    A7) Step 1) Find Fixed End Moments

    Step 2) Distribution Factor

    Distribution table

    joint

    Member

    K

    B

    BA

    1.41

    0.47

     

    BC

    1.41

    0.53

     

    Step 3) Moment Distribution Table

    0.47

    0.53

    Member

    AB                                    BA

    BC                           CB

    External moment

     

    Fixed end

     

    Balancing

     

     

    60                                   -  60

     

     

    135   

     

     2.5                          -2.5

     

    -1.25                         2.5

    Initial Moment

     

    Balancing

    60                                     -60

     

                                          27.61

    1.25                         135

     

    31.13

    COF

     

    Balancing

    13.8                                 0

     

                                            0

    0

     

    0

       Final moments                     

     

    73.8                   -32.39

    32.39135

     

    BMD

    Q8) Analyze the given beam ABCD having pt B is sink by 10mm EI

    A8) For AB Span

    KNM

    BC= +VE

    CD=0  No loading

    Step 2) Distribution factors

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

    1.66

    0.60

     

     

    0.40

    C

    CB

     

    CD

     

    0.40

     

    0.60

     

    Step 3) Moment Distribution Table

    0.6

    0.4

     

    0.4

    0.6

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

     

    Balance

    34.25

     

    -5.75

     

    -28.74

     

    53.66

     

    -19.16

    -66.33

     

    26.53

    0

     

    39.79

    0

     

    COF

    Balancing

    +14.37

    -7.95

    13.26

    -5.30

    -9.58

    +3.83

     

    +5.74

    19.89

    COF

    Balancing

    -3.97

     

    -1.14

    1.91

    -0.76

    -2.65

    1.06

     

    1.59

     

    COF

     

    Balancing

    -0.57

     

     

    -0.31

    0.53

     

    -0.21

    0.38

     

    0.15

     

     

    0.22

    0.79

    Final Moments

    15.34               

     

    -43.89              

    43.89              

    -46.61              

    -46.61              

    20.68

     

     

    Q9) Draw BMD by Moment Distribution Method and C support is sink by 25mm

    A9) For AB   

    For BC mm

    For CD mm

    Step 2) Distribution factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

    0.33

     

     

    0.66

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

    0.66

     

     

     

     

    0.33

     

    Step 3) Moment Distribution Table

    0.33

    0.66

     

    0.66

    0.33

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

    40

    -40

    149.16

    135.83

    -40.83

    42.91

    -85.83

    +85.83

    Final Balance

    40

    -40

    -36.02

    149.16

    -72.04

    135.83

    -91.02

    2.08

    -45.51

    0

     

    COF Balancing

    -18.01

     

    15.02

    -45.51

    30.04

    -36.02

    23.77

     

    11.89

     

    COF

    Balancing

    7.505

     

    -3.92

    11.89

    -7.85

    15.02

    -9.91

     

    -4.957

     

    COF

     

    Balancing

    -1.96

     

     

    1.64

    -4.96

     

    3.28

    -3.93

     

    2.59

     

     

    1.296

     

    Final Moments

    29.28               

    -63.28

    64.01

    36.33

    -35.20

    0

     

     

    Q10) Analyze the frame shown in fig. by MDM and Draw BMD

    A10) Step 1) Fixed End Moments

    Step 2) Distribution Factor

    Joint

    Members

    K

     

     

     

     

    B

    BA

     

     

    BD

     

     

     

    BC

     

     

     

     

     

    2.33

    0.28

     

     

    0.43

     

     

     

    0.28

     

    Step 3) Moment Distribution Table

    0.28

    0.43

    0.28

    Members

    AB

    BA

    BD

    BC

    CB

    DB

    Fixed end

     

    Balance

    90

     

    -90

     

    20.3

     

    10

     

    31.17

    7.5

     

    20.3

    -1.5

    -10

     

    Cot Balancing

    10.15

    0

    0

    0

    0

    0

    0

     

    10.15

    15.58

     

    Final

     

    100.15

     

    -69.7

     

    42.17

     

     

    27.8

     

    2.65

     

    5.58

     

    Step 4) Draw BMD and SFD

     

    BMD

     

    Q11) Determine Moments of the given figure by moment Distribution Method

    A11) Step 1) Non-sway

    Step 2) Fixed End moments

    knm

    Step 3) Distribution factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

     

     

     

     

    0.43

     

     

    0.57

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

    0.64

     

     

     

     

    0.36

     

     

    Step 4) Moment Distribution table

    0.43

    0.57

     

    0.64

    0.36

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

    0

    0

    22.5

    -22.5

    0

     

    0

    Initial Balance

    0

    0

    -0.96

    22.5

    -1.28

    -22.5

    +1.14

    0

    +0.81

    0

     

    COF Balancing

    -0.48

     

    0.24

    +0.57

    0.32

    -0.64

    0.40

     

    0.23

     

    COF

    Balancing

    0.12

     

    -0.086

    0.20

    -0.114

    0.16

    -0.10

     

    -0.057

     

    Final Moments

    -0.36                 

    -0.806             

    0.806

    -3.57

    -0.637

    0

     

    Q12) Analyses the given frame as shown. By MDM

    A12) Step 1) Fixed end moment

    Step 2) Distribution Factor

    Joint

    Members

    K

     

     

     

     

    B

    BA

     

     

    BD

     

     

     

    BC

     

     

     

     

     

    3.455 EI

    0.40

     

     

    0.28

     

     

     

    0.32

     

    Moment Distribution Table

    0.40

    0.28

    0.32

    Members

    AB

    BA

    BD

    BC

    CB

    DB

    Fixed end

    106.66

    -53.33

    10

    5

    40

    20

    -40

    40

     

    -10

    +10

    Initial Balance

    106.66

    -53.33

    -8.66

    15

    -6.06

    60

    -6.43

    0

     

    0

     

    COF Balancing

    -4.33

    0

    0

    0

    0

    0

    0

     

     

     

    Final

    Moments

     

    102.35 

     

     

                              -61.99              

     

    8.94                 

     

    53.07

     

     

    0

     

    0

     

     

    Step 5) Draw BMD

    Q13) Analyze the non-sway frame as shown in fig. by MDM

    A13) Step 1) Fixed end moment

    Step 2) Distribution factor

    Joint

    Members

    K

    B

    BA

     

     

    BC

    =

     

     

     

     

     

    0.70

     

     

    0.30

    C

    CB

     

     

     

     

    CD

     

     

     

     

     

     

     

    0.30

     

     

     

     

    0.70

     

    Step 4) Moment Distribution table

    0,70

    0.30

     

    0.30

    0.70

    Members

    AB

    BA

    BC

    CB

    CD

    DC

    Fixed end

    30

     

    -30

    -30

     

    -15

    90

    -90

    30

     

    15

    -30

     

    30

    Initial

     

    Balance

    0

    -45

     

    -31.5

    90

     

    -13.5

    -90

     

    13.5

    45

     

    31.5

    0

    COF Balancing

     

     

    -4.72

    6.75

    -2.02

    -6.75

    2.02

     

    4.72

     

    COF 

    Balancing

     

     

    -0.7

    1.01

    -0.3

    -1.01

    0.3

     

    0.7

     

    COF 

    Balancing

     

     

    -0.1

    0.15

    -0.04

    -0.15

    0.04

     

    0.1

     

     

    Final

    Moments

     

     

     

    0

     

     

    -82.2

     

     

    82.2

     

     

    82.2

     

     

    -82.2

     

     

    0

     

     

    Step 4) Draw BMD

    Q14) Analyze the given frame by moment distribution method take EI Constant

    A14) Step 1) Find Distribution Factor

    Joint

    Member

    K

    ƩK

    D.F.

    B

    BA

      =3EI/3=1 EI

    0.33

    BC

    = 4EI/2 = 2 EI

    0.67

    C

    CB

    = 4EI/2=2EI= 2EI

    0.67

    CD

    = 4EI/4= EI

    0.33

     

     

     

     

     

     

     

     

    Step 2) Non sway moment distribution moment Table

    Members

    AB                            BA

    BC                                    CB

    CD                           DC

    Fixed End

     Balancing

    0                                                                   0

                                       0

    0                                                                                      0

    0                                            0

    0                                                           0

    0

    Final Moments

    0                                 0

    0                                          0         

    0                            0

     

    Step 3) Assumption For sway Frame

     

     

     

     

     

     

     

     

    Step 4: Horizontal thrust at A

    Actual Sway force of 12 kN

    Draw Sway Moment Distribution Table

    0.33

    0.67

     

    0.67

    0.33

    Member

      AB 

          BA

     

    BC                        CB        

     

    CD                     DC

    FEM

    Balancing

    0

               8

    0

            0

    9

    9

     

           -2.67

    -5.33

           -6.00

    -3.00

     

     

    COF

    Balancing

     

     

    1

    -3

            -2.67

     

    1.5

     

    2

    1.78

    0.85

     

     

    COF

    Balancing

     

     

    -0.30

    0.69

    1

     

     

     

    -0.39

    -0.67

    -0.33

     

     

    COF

    Balancing

     

     

    0.11

    -0.33

    -0.30

     

    0.17

     

    0.22

    0.20

    0.10

     

     

    COF

    Balancing

     

     

    -0.03

    0.10

    0.11

     

    0.05

     

    -0.07

    -0.07

    0.05

     

    0

    6.11

    -6.11

    -6.62

    6.62

    7.83

     

     

    Step 6) Final Moments Table:

    Member

    AB                             BA

    BC                           CB

    CD                         DC

    Non-Sway Moment

    0                                0

    0                                 0

    0                                0

    Sway Moment

    0

    6.11

    -6.11

            -6.62

    6.62

           7.83

    Actual Sway

    0

    +12.98

    -12.98

            -14.06

    +14.06

          +16.6

    Final Moment (Addition of Non-Sway Moment +corrected moment by sway)

    0

    +12.98

    -12.98

            -14.06

    +14.06

          +16.6

     

    Correct Horizontal A reaction

     

    Q15) A two hinged portal frame ABCD consist of a vertical columns AB, DC at 4m height if the beam BC of 3m the frame carried a vertical point load of 120kN on the beam at a distance of 1m from B find the reaction at support.

    A15)

    Non-Sway analysis: 

    Step 1) Fixed end moment   

                                  

    Step 2) Draw Distribution Factor Table

    Joint

    Member

    K

    ƩK

    D.F.

     

    B

    BA

    3EI/L= 3EI/4 = 0.75 EI

     

    2.08 EI

    0.36

    BC

    4EI/L= 4EI/3=1.33 EI

    0.64

     

    C

    CB

    4EI/L = 4EI/3=1.33EI

     

    2.08 EI

    0.64

    CD

    3EI/L= 3EI/4=0.75 EI

    0.36

     

    Step 3) Draw Non sway moment distribution Table

     

    0.36

    0.64

     

    0.64

    0.36

    Member

    AB                            BA

    BC                          CB

     

    CD                         DC

    FEM

    Balancing

    0                                                            

                                     -19.2

    53.33                  -26.66

    -34.13                17.06

     

    0                                                     0

       9.6

    COF

    Balancing

     

                                      -3.07

       8.53               -17.07

    -5.46                    10.92

     

     

    6.15

    COF

    Balancing

     

                                         -1.96

       5.46                   -2.73

    -3.49                     1.75    

     

     

    0.98

    Final Moments

    0                               -24.23

    24.24                 -16.73

     

    16.73                     0

     

    Horizontal reaction

    Sway force = 1.87 kN 

    Sway analysis

    Step 4) Initial equivalent moments are negative.

    :

    0.36

    0.64

     

    0.64

    0.36

    Member

    AB                            BA

    BC                          CB

     

    CD                         DC

    FEM

    Balancing

    0                                 -10   

                                     3.6

    0                              0

    6.4                     6.4

     

    -10                               0

     3.6

    COF

    Balancing

     

                                     - 1.15

    3.2                      3.2

    -2.05                    -2.05.

     

     

    -2.05

    COF

    Balancing

     

                                         0.35

      - 1.03                   -1.03

    0.66                     0.66    

     

     

    0.35

    Final Moments

    0                                    -7.2

    7.2                         7.2

     

    -7.2                     0

     

    Horizontal reaction

    Resolving force horizontally = 1.81 +1.81 =3.63kN

    Actual Sway = 3

    Sway                    0        7.27

    7.27                                7.27

    -7.27                                    0

    0     – 3.64

    +3.64                              3.64

    -3.64                                    0

    Non-Sway            0      21.17

    -21.17                           21.17

    -21.17                                  0

     

        

     

    Q16) Analyses the rigid frame shown in fig by M.D. method.

    A16) Step1) Fixed end moment

     Fixed end moment in all the members = 0

    Step 2) D.F

    B

    BA

    2.33EI

    0.57

    BC

    0.43

    C

    CB

    2.5EI

    0.4

    CD

    0.6

     

    Conclude S = 80 kN

    Sway Force

    Consider FBD for column

    SWAY ANALYSIS

    Consider Sway on right hand side

    is

    is

    Consider                                   

    Moment distribution maybe carried out.

    A                              B        C     D

     

    10

    0.5

    10

    0.5                                            

     

    0.5

     

    0.5

    20

     

    20

     

    -5

    -5

    -10

    -10

     

    -2.5

     

     

    2.5

    -5

    -2.5

     

    -5

    2.5

    1.25

    1.25

     

    1.25

     

     

    -0.32

    0.63

    1.25

     

    0.63

    -0.32

    -0.62

    -0.62

     

    -0.16

     

     

    +0.16

    -0.31

    -0.16

     

    -0.31

    0.16

    0.08

    0.08

     

    0.08

     

     

    -0.02

    0.04

    0.08

     

    0.04

    -0.02

    -0.04

    0.04

     

    +8.67

    -7.32

    -7.32

    -10.66

    10.66

    15.35

     

    Sway Correction Factor

    Arbitrary Sway

    +8.67

    +7.32

    -7.332

    -10.66

    +10.66

    +15.37

    Actual Sway

    8.67×6.37= 53.88

    7.3×6.2= 45.44

    -45.44

     

     

     

    Non-Sway

    +20.42

    -12.44

    +12.44

    +3.35

    -3.35

    -1.77

    Final

    +74.30

    +33.05

    -33.05

    -62.75

    +62.7

    +93.62