Back to Study material
NMCP


Unit - 3


Interpolation

Q1) Using Newton’s forward difference formula, find the sum

A1)

Putting

It   follows that

Since is a fourth-degree polynomial in n.

Further,

By Newton Forward Difference Method

Q2) Given find   , by using Newton forward interpolation method.

A2)

Let  , then

0.7071

0.7660

    -

0.8192

0.8660

The table of forward finite difference is given below:

        45

 

        50

 

        55

 

         60

         0.7071

 

         0.7660

 

        0.8192

 

         0.8660

 

       0.0589

 

       0.0532

 

       0.0468

 

     -0.0057

 

     -0.0064

 

       -0.0007

 

By Newton forward difference method

Here initial value = 45, difference of interval h = 5 and the value to be calculated at x=52.

By Formula

 

Q3) Find from the following table:

0.20

0.22

0.24

0.26

0.28

0.30

1.6596

1.6698

1.6804

1.6912

1.7024

1.7139

A3)

Consider the backward difference method

      0.20

 

      0.22

 

      0.24

 

      0.26

 

      0.28

 

      0.30

  1.6596

 

   1.6698

 

   1.6804

 

   1.6912

 

  1.7024

 

    1.7139

 

    0.0102

 

    0.0106

 

   0.0108

 

   0.0112

 

  0.0115

 

 0.0004

 

 0.0002

 

 0.0004

 

 0.0003

 

-0.0002

 

 0.0002

 

-0.0001

 

0.0004

 

-0.0003

 

-0.0007

 

Here

By Newton backward difference formula

 

Q4) The following table give the amount of a chemical dissolved in water:

Temp.

Solubility

19.97

21.51

22.47

23.52

24.65

25.89

 

A4)

Compute the amount dissolve at

Consider the following backward difference table:

Temp.  x

Solubility y

  10

 

  15

 

  20

 

  25

 

  30

 

  35

   19.97

 

   21.51

 

  22.47

 

  23.52

 

   24.65

 

   25.89

 

   1.54

 

  0.96

 

 1.05

 

  1.13

 

  1.24

 

  -0.58

 

   0.09

 

   0.08

 

   0.11

 

  0.67

 

  -0.01

 

   0.03

 

 -0.68

 

  0.04

 

0.72

 

Here

By Newton Backward difference formula
 

 

Q5) The following are the marks obtained by 492 candidates in a certain examination

Marks

0-40

40-45

45-50

50-55

55-60

60-65

No.  of  candidates

210

43

54

74

32

79

Find out the number of candidates:

a)     Who secured more than 48 but not more than 50 marks?

b)    Who secured less than 48 but not less than 45 marks?

A5)

Consider the forward difference table given below:

Marks  upto x

No. Of candidates y

    40

 

    45

 

    50

 

    55

 

    60

 

    65

  210

 

210+43=253

 

253+54=307

 

307+74=381

 

381+32=413

 

413+79= 492

 

    43

 

    54

 

    74

 

    32

 

     79

 

  11

 

  20

 

  -42

 

   47

 

   9

 

  -62

 

   89

 

    -71

 

     151

 

    222

 

Here 

By Newton Forward Difference formula

f

a)     No. Of  candidate secured more than 48  but  not more than  50 marks

b)    No. Of  candidate secured less than 48 but  not  less  than 45 marks

 

Q6) By using Stirling’s formula to compute from the table ( given below-

10

11

12

13

14

23,967

28,060

31,788

35,209

38,368

 

A6)

Taking the origin at

We get the following central table-

P

-2

 

-1

 

0

 

1

 

2

0.23967

 

0.28060

 

0.31788

 

0.35209

 

0.38368

 

0.04093

 

0.03728

 

0.034121

 

0.03159

 

-0.00365

 

-0.00307

 

-0.00062

 

0.00058

 

-0.00045

 

-0.00013

 

 

At x = 12.2, p = 0.2

Stirling’s formula-

When p = 0.2, we get-

 

Q7) By using Bessel’s formula to find the value of f(27.5) from the table given below-

x

25

26

27

28

29

30

f(x)

4.000

3.846

3.704

3.571

3.448

3.333

 

A7)

Taking the origin at

We have p = x – 27

The central table will be as follows-

x

p

y

25

 

26

 

27

 

28

 

29

 

30

-2

 

-1

 

0

 

1

 

2

 

3

4.000

 

3.846

 

3.704

 

3.571

 

3.448

 

3.333

 

-0.154

 

-0.142

 

-0.133

 

-0.123

 

-0.115

 

 

0.012

 

0.009

 

0.010

 

0.008

 

-0.003

 

-0.001

 

-0.002

 

0.004

 

-0.001

 

At x = 27.5, p =0.5

Bessel’s formula is-

When p = 0.5, we get-

So that-

f(27.5) = 3.585

 

Q8) By means of Newton’s divided difference formula, find the values of from the following table:

x

4

5

7

10

11

13

f(x)

48

100

294

900

1210

2028

 

A8)

We construct the divided difference table is given by:

x

f(x)

First order divide difference

Second order divide difference

Third order divide difference

Fourth order divide difference

4

 

5

 

7

 

10

 

11

 

13

48

 

100

 

294

 

900

 

1210

 

2028

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

   0

 

By Newton’s Divided difference formula

.

Now, putting in above we get

.

 

 

Q9) Find a polynomial satisfied by , by the use of Newton’s interpolation formula with divided difference.

x

-4

-1

0

2

4

F(x)

1245

33

5

9

1335

Here

 

A9)

We will construct the divided difference table:

x

F(x)

First order divided difference

Second order divided difference

Third order divided difference

Fourth order divided difference

-4

 

-1

 

0

 

2

 

4

1245

 

33

 

5

 

9

 

1335

 

 

 

 

 

 

 

 

 

 

 

 

By Newton’s divided difference formula

.

This is the required polynomial.

 

Q10) find the polynomial of fifth degree from the following data

X

0

1

3

5

6

9

Y=f(x)

-18

0

0

-248

0

13104

Here

A10)

We get 

By Lagrange’s interpolation formula