Back to Study material
NMCP


Unit - 4


Numerical differentiation and integration

Q1) Given that

X

1.0

1.1

1.2

1.3

Y

0.841

0.891

0.932

0.963

Find at .

A1)

Here the first derivative is to be calculated at the beginning of the table, therefore forward difference formula will be used

Forward difference table is given below:

X

Y

1.0

 

1.1

 

1.2

 

1.3

0.841

 

0.891

 

0.932

 

0.962

 

0.050

 

0.041

 

0.031

 

-0.009

 

-0.010

 

-0.001

 

By Newton’s forward differentiation formula for differentiation

Here 

 

Q2) Find the first and second derivatives of the function given below at the point :

X

1

2

3

4

5

Y

0

1

5

6

8

A2)

Here the point of the calculation is at the beginning of the table,

Forward difference table is given by:

X

Y

1

 

2

 

3

 

4

 

5

0

 

1

 

5

 

6

 

8

 

1

 

4

 

1

 

2

 

3

 

-3

 

1

 

-6

 

4

 

 

-10

 

By Newton’s forward differentiation formula for differentiation

Here  , 0.

Again 

At

 

Q3) Given that

X

0.1

0.2

0.3

0..4

Y

1.10517

1.22140

1.34986

1.49182

 

Find ?

A3)

Backward difference table:

X

Y

0.1

 

0.2

 

0.3

 

0.4

1.10517

 

1.22140

 

1.34986

 

1.49182

 

0.11623

 

0.12846

 

0.14196

 

0.01223

 

0.01350

 

0.00127

Newton’s Backward formula for differentiation

Here

 

Q4) State the trapezoidal rule for finding an approximate area under the given curve. A curve is given by the points (x, y) given below:

(0, 23), (0.5, 19), (1.0, 14), (1.5, 11), (2.0, 12.5), (2.5, 16), (3.0, 19), (3.5, 20), (4.0, 20).

Estimate the area bounded by the curve, the x axis and the extreme ordinates.

A4)

We construct the data table:

X

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Y

23

19

14

11

12.5

16

19

20

20

Here length of interval h =0.5, initial value a = 0 and final value b = 4

By Trapezoidal method

Area of curve bounded on x axis =

 

Q5) Evaluate using trapezoidal rule with five ordinates

Here

A5)

We construct the data table:

X

0

Y

0

0.3693161

1.195328

1.7926992

1.477265

0

 

 

Q6) Evaluate

Using Simpson’s 1/3 rule with .

A6)

For , we construct the data table:

X

0

0

0.50874

0.707106

0.840896

0.930604

0.98281

1

By Simpson’s Rule

 

Q7) Evaluate

A7)

By Simpson’s 3/8 rule.

Let us divide the range of the interval [4, 5.2] into six equal parts.

For h=0.2, we construct the data table:

X

4.0

4.2

4.

4

4.6

4.8

5.0

5.2

Y=logx

1.3863

1.4351

1.4816

1.5261

1.5686

1.6094

1.6487

By Simpson’s 3/8 rule 

= 1.8278475

 

Q8) Evaluate 

A8)

Let

Here the interval of x and y are and .

Let 

Consider the following table:

 

          

 

 

 

 

 

 

 

 

         

 

 

 

 

 

          

 

 

 

 

Or        

 

 

 

 

 

By Trapezoidal Rule

.

 

Q9) Evaluate

A9)

Let 

And

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Or

 

 

 

 

 

By Trapezoidal Rule

 

Q10) Evaluate 

A10)

Let

Here

Let the number of intervals be .

 

          

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

Or

 

 

 

 

 

By Simpson’s 1/3 Rule

 

Q11) Evaluate

A11)

Let 

And

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Or

 

 

 

 

 

By Simpson’s 1/3 Rule