Unit - 5
Solution of linear simultaneous equation
Q1) Apply Gauss Elimination method to solve the equations:
A1)
Given
Check Sum (sum of coefficient and constant)
-1 …. (i)
-16 …. (ii)
5 …. (iii)
(I)We eliminate x from (ii) and (iii)
Apply eq(ii)-eq(i) and eq(iii)-3eq(i) we get
-1 ….(i)
-15 ….(iv)
8 ….(v)
(II) We eliminate y from eq(v)
Apply
-1 ….(i)
-15 ….(iv)
73 ….(vi)
(III) Back Substitution we get
From (vi) we get
From (iv) we get
From (i) we get
Hence the solution of the given equation is
Q2) Solve the equation by Gauss Elimination Method:
A2)
Given
Rewrite the given equation as
… (i)
….(ii)
….(iii)
…(iv)
(I) We eliminate x from (ii),(iii) and (iv) we get
Apply eq(ii) + 6eq(i), eq(iii) -3eq(i), eq(iv)-5eq(i) we get
…(i)
….(v)
….(vi)
…(vii)
(II) We eliminate y from (vi) and (vii) we get
Apply 3.8 eq(vi)-3.1eq(v) and 3.8eq(vii)+5.5eq(v) we get
…(i)
….(v)
…(viii)
…(ix)
(III) We eliminate z from eq (ix) we get
Apply 9.3eq (ix) + 8.3eq (viii), we get
… (i)
….(v)
…(viii)
350.74u=350.74
Or u = 1
(IV) Back Substitution
From eq(viii)
Form eq(v), we get
From eq(i),
Hence the solution of the given equation is x=5, y=4, z=-7 and u=1.
Q3) Apply Gauss Elimination Method to solve the following system of equation:
A3)
Given … (i)
… (ii)
… (iii)
(I) We eliminate x from (ii) and (iii)
Apply we get
… (i)
… (iv)
… (v)
(II) We eliminate y from (v)
Apply we get
… (i)
… (vi)
… (vii)
(III) Back substitution
From (vii)
From (vi)
From (i)
Hence the solution of the equation is
Q4) Solve the system of linear equations
A4)
Using partial pivoting by Gauss elimination method we rewrite the given equations as
(1)
(2)
(3)
Apply and
(1)
(4)
(5)
Apply )
(1)
(4)
Or .
Putting value of z in we get .
Putting values of y and z in we get .
Hence the solution of the equation is .
Q5) Use Jacobi’s method to solve the system of equations:
A5)
Since
So, we express the unknown with large coefficient in terms of other coefficients.
Let the initial approximation be
2.35606
0.91666
1.932936
0.831912
3.016873
1.969654
3.010217
1.986010
1.988631
0.915055
1.986532
0.911609
1.985792
0.911547
1.98576
0.911698
Since the approximation in ninth and tenth iteration is same up to three decimal places, hence the solution of the given equations is
Q6) Solve by Jacobi’s Method, the equations
A6)
Given equation can be rewrite in the form
… (i)
..(ii)
..(iii)
Let the initial approximation be
Putting these values on the right of the equation (i), (ii) and (iii) and so we get
Putting these values on the right of the equation (i), (ii) and (iii) and so we get
Putting these values on the right of the equation (i), (ii) and (iii) and so we get
0.90025
Putting these values on the right of the equation (i), (ii) and (iii) and so we get
Putting these values on the right of the equation (i), (ii) and (iii) and so we get
Hence solution approximately is
Q7) Use Gauss –Seidel Iteration method to solve the system of equations
A7)
Since
So, we express the unknown of larger coefficient in terms of the unknowns with smaller coefficients.
Rewrite the above system of equations
Let the initial approximation be
3.14814
2.43217
2.42571
2.4260
Hence the solution correct to three decimal places is
Q8) Solve the following system of equations
By Gauss-Seidel method.
A8)
Rewrite the given system of equations as
Le t the initial approximation be
Thus the required solution is
Q9) Solve the system of equations
A9)
Which is non-zero so the inverse exists.
Comparing the diagonal matrix with corresponding columns.
By back Substitution we get
Form first part of above
Similarly, we solve second and third part and obtain a matrix whose columns are
Which is the required inverse
Q10) Find the inverse and determinant of
A10)
Here therefore exist.
On comparing the coefficient matrix with each column of RHS matrix.
From first term back substitution
We get
From second and third we get