Back to Study material
EM-IV

Unit-1Numerical methodsQ1) Solve

,

 using Taylor’s series method and compute .A1)

Here This implies that .

Differentiating, we get

     .

     .

   

    .

The   Taylor’s series at ,

 

 

  (1)

At in equation (1) we get

 

 

At in equation (1) we get

 

 

 

 Q2) Solve

numerically, start from and carry to using Taylor’s series method.A2)

Here .

 

We have

Differentiating, we get

  implies that or

  implies that or .

   implies that

  implies that

The   Taylor’s series at ,

 

 Or

              

            

Here

 

 

 

 

 

The   Taylor’s series

 

        

       .

 Q3) Use Euler’s method to find y(0.4) from the differential equation

                                            with h=0.1

   A3)

Given equation  

          Here

      We break the interval in four steps.

             So that

          By Euler’s formula

          , n=0,1,2,3   ……(i)

         For n=0 in equation (i) we get

             

                                                                   

                                                              

          For n=1 in equation (i) we get

             

                                                                   

                                                               .01

           For n=2 in equation (i) we get

             

                                                                   

                                                              

          For n=3 in equation (i) we get

             

                                                                   

                                                              

      Hence y(0.4)  =1.061106.

 Q4) Given 

with the initial condition y=1 at   x=0.Find y for x=0.1 by Euler’s   method (five steps).A4)

Given equation is  

Here   

No. of steps n=5 and so that

So that

           Also

          By Euler’s formula

          , n=0,1,2,3,4   ……(i)

         For n=0 in equation (i) we get

             

                                                                   

                                                              

        For n=1 in equation (i) we get

             

                                                                   

                                                              

       For n=2 in equation (i) we get

             

                                                                   

                                                              

       For n=3 in equation (i) we get

             

                                                                   

                                                              

       For n=4 in equation (i) we get

             

                                                                   

                                                              

  Hence  

 

 Q5) Using modified   Euler’s method, obtain a solution of the equation

                      

A5)Given 

equation 

Here

By modified Euler’s formula the initial iteration is

                             

                                

                                

  The iteration formula by modified Euler’s method is

          -----(i)

     For n=0  in equation  (i)  we get

          

                                                                 

Where   and  as above

                                                                 

  For n=1 in equation (i) we get

          

                                                                 

                                                               

  For n=2 in equation (i) we get

          

                                                                 

                                                               

    For n=3 in equation (i)  we get

          

                                                                 

                                                               

Since third and fourth approximation are equal.

Hence y=0.0952 at x=0.1

To calculate the value of  at x=0.2

By modified Euler’s formula the initial iteration is

                             

                                       

                                      

The iteration formula by modified Euler’s method is

          -----(ii)

          For n=0 in equation (ii) we get

          

                                                                 

                                                                  1814

       For n=1  in equation  (ii)  we get

          

                                                                 

                                                                  1814

   Since first and second approximation are equal.

  Hence y = 0.1814 at x=0.2

To calculate the value of  at x=0.3

By modified Euler’s formula the initial iteration is

                             

                                       

                                      

The iteration formula by modified Euler’s method is

          -----(iii)

          For n=0 in equation (iii)  we get

          

                                                                 

                                                                 

 

      For n=1  in equation  (iii)  we get

          

                                                                 

                                                                 

         For n=2 in equation (iii) we get

          

                                                                 

                                                                 

     For n=3 in equation (iii)  we get

          

                                                                 

                                                                 

     Since third and fourth approximation are same.

      Hence y = 0.25936 at x = 0.3

 Q6) Use Runge Kutta method to find y when x=1.2 in step of h=0.1 given that

                

A6)Given

equation

Here

Also

By  Runge Kutta formula for first  interval

     

    

         

         

         

         

  

         

         

         

         

  

         

         

         

         

Again

A fourth order Runge Kutta formula:

     

    

    

To find y at 

    

    

         

         

         

         

  

         

         

         

         

  

         

         

         

         

A fourth order Runge Kutta formula:

     

    

    

  Q7) Using Runge Kutta method of fourth order, solve

A7)Given

equation 

Here 

Also

By  Runge Kutta formula for first  interval

     

    

         

         

          

  

         )

         

          

  

        

         

         

 A fourth  order Runge Kutta formula:

     

            

           

Hence at x  = 0.2 then y  = 1.196

To find the  value of y at x=0.4. In this case

  

    

          

          

  

       

        

   

        

         

 A fourth  order Runge Kutta formula:

     

           

           

Hence at  x  = 0.4 then  y=1.37527

 Q8) Using RungeKutta method of order four , solve   to find A8)

Given second order differential equation is

Let   then above equation reduces to

     Or

(say)

Or .

By RungeKutta Method we have

A fourth  orderRungeKutta formula:

 Q9: Solve the differential equations

for

Using four order Runge Kutta method with initial conditions A9)

Given differential equation are

Let

And

Also

 By RungeKutta Method we have

A fourth  orderRungeKutta formula:

And  

.

 

 Q10) Find the solution of the differential equation   in the range for the boundary conditions y = 0 and x = 0 by using Milne’s method.A10)By using Picards method-

Where

To get the first approximation-

We put y = 0 in f(x, y),

Giving-

In order to find the second approximation, we put y  = in f(x,y)

Giving-

And the third approximation-

Now determine the starting  values of the Milne’s method from equation  (1), by choosing h = 0.2

Now using the predictor-

X = 0.8

,      

 

And the corrector-

,                 ................(2)

 

Now again using corrector-

Using predictor-

 

X = 1.0,  

,      

And the corrector-

 

,      

Again using corrector-

,       which is same as before

Hence

 

 Q11) Solve the intital value problem

,  y(0) = 1

to find y(0.4) by using Adams-Bashforth method. Starting solutions required are to be obtained using Runge-Kutta method of order 4 using step value h = 0.1A11)

Here we have-

Here

So that-

Thus

To find y(0.2)-

Here

Thus,

Y(0.2) = 

To find y(0.3)-

Here

Thus,

Y(0.3) = 

Now the starting values of Adam’s method with h = 0.1-

Using predictor-

 

Using corrector-

Hence