Back to Study material
SS

Unit 7Z transformsQ1) Explain Region of Convergence?The z-transform is important technique, used in areas of signal processing, system design and analysis and control theory.The formula used to convert a discrete time signal x[n] to X[z] is as follows:

X(z) =   z-n

where x[n] is the discrete time signal and X[z] is the z-transform of the discrete time signal. Z-transform comes in two parts. The first part is the formula as shown above The second part is to define a region of convergence for the z-transform.Both parts are needed for a complete z-transform as a z-transform without a ROC would not be of much help in signal processing. Q2) Derive the expression for z transform?The Z transform for discrete time system x(n ) is defined as  X(z) =    ------- (1) where z is a complex variable.

In polar form z can be expressed as

z  = r e jw  ---------------(2) where r is the radius of a circle

 For n≥ 0

X(z ) =        --------- (3)which is called one-sided z-transform.

By substituting z = r e jw

X(r e jw)  =    (r e jw) –n     ------- (4)

     e- jwn       ----- (5)

Equation(5) represents the Fourier transform of the signal x(n) r-n

Hence the inverse DTFT  X(r ejw) must be x(n) r-n.

x(n) r-n = 1/2π r e jw )  e jwn dw

On multiplying both sides by rn  we get

x(n) = 1/ 2 π   r ejw) (r ejw ) n dw                  [ z = r ejw

Let z= r e jw  and dw= dz/jz

dz = r ejw dw         

dw = dz/jre jw

x[n] = 1/ 2πj   z n-1 dz       

Q3) If X(z)= 4 – 5 z-2 + z-3 – 2z -4    then find x[n] Solution:

x[n] = 4 - 5 + - 2

Q4) Explain the properties of ROC?
  • The ROC is a ring or disk in z-plane centered at the origin.
  • The ROC cannot contain any poles.
  • If x(n) is finite duration casual sequence then the ROC is the entire z-plane except at z=0.
  • If x(n) is a finite duration anti-casual sequence then the ROC is the entire z-plane except at z=∞.
  • If x(n) is a finite duration two- sided sequence the ROC is entire z-plane except at z=0 and z=∞.
  • If x(n) is infinite duration two- sided sequence ROC will consist of a ring in z-plane bounded on the interior and exterior by a pole not containing any poles.
  • The ROC of an LTI stable system contains the unit circle
  • ROC must be connected region.
  • Q5) Find the z-transform and ROC of the signal x(n) = an u(n)  Solution: 

    X(z) = 

             = an u(n) -----(1)    u(n) = 0 for n<0

              1 for n≥0

      = an ------- (2)

     = n   ------- (3)

     This is a geometric series of infinite length that is

     a + ar + ar2 + ………….. ∞ = a /1-r if |r| <1

              Then from equation (3) it converges when |az-1| < 1 or |z| >|a|

     Therefore

     X(z) = 1/ 1-az-1:  ROC    |z| > |a|

     

    Figure . ROC |z| > |a|Q6) Find the z-transform of the signal x(n) =-b n u(-n-1). Find ROC

    X(z) = 

    X(z) =  bn u(-n-1)                                                                u(-n-1) =0 for n ≥0

                = 1 for n                

                                                                                                                                        ≤ -1

    = bn   = b-1  =

    = b-1z/1- b-1z = z/ z-b = 1/ 1-bz-1                                                               |z| < |b|

     

    Figure . ROC |z| < |b|Q7) Find the z transform of x(n) = cos n u(n)

    X(z) =

    =

    = ejn + e-jn/2] z -n  

    = ½ [    e j z -1 ) n += -j   z -1 ) n ]

    Both the series converges if [ e j  z-1| <1  and | e j z -1 | <1 which implies |z|>1 

    Now X(z) = ½ [ 1/1 – e j  z -1   + 1/ 1 – e -j z -1 ]

    = ½ [ 1 – e -j z -1 + 1 – e j  z -1   / 1 – e j  z -1    – e -j z -1 + z -2  

    e j  + e -j  = 2 cos

    = ½ [ 2 – 2 z -1 cos / 1 – 2 z-1 cos + z -2 ]

    = 1-z-1 cos / 1 – 2 z-1 cos   + z -2

    Q8) Determine the signal x(n) whose z-transform is given by X(z) = log(1- az-1)

    X(z)= log(1-az-1)

    Differentiating both sides we get

    d/dz X(z) = 1/1-az-1 (a z-2) = az-2/1- az-1

    -z d/dz { X(z)} =-az-1/1-az-1

    = -az-1[ 1/1-az-1]

    = -a Z[ a n-1 u(n-1)]                           -------- (1)

    From differentiation property

    Z{ n x(n)} = -z d/dz [ X(z)]            ------- (2)

    Comparing (1) and (2) we get

    n  x(n) = -a [ a n-1 u(n-1)]

    or x(n) = -a [a n-1 u(n-1)]/n

    Q9) Find the inverse z transform of X(z) = z+0.2/ (z+0.5) (z-1)   |z|>1

    X(z) = z+0.2 / z2 -0.5z -0.5

    Divide the numerator by denominator

                                                z-1 + 0.7 z-2 + 0.85 z-3 + 0.775 z-4

         x2 -0.5z -0.5     

                                      z+0.2

                                     z -0.5 -0.5 z -1

                                    0.7 + 0.5 z-1

                                    0.7 -0.35 z-1 -0.35 z-2

                                            0.85 z -1 + 0.35 z-2

                                            0.85 z-1 -0.42 z-2 -0.425 z-3

     

                                                                          0.775 z -2 + 0.425 z-3

                                                                         0.775 z-2  -0.387 z-3 – 0.3875 z-4

     

    X(z) = z-1 + 0.7 z-2 + 0.85 z-3 + 0.775 z -4 + …………………………….   

    Q10) Find the partial fraction method of

    X(z) = ¼ z-1

      (1 – ½ z-1)(1-1/4 z-1)

     

    X(z) =         A                +          B

          Z (1-1/2z-1)      (1 – ¼ z-1)

     

    By solving A= 1 and B=-1

    Therefore,

    X(z) =   z     -       z 

     z-1/2 z-1/4

    x(n) = (1/2) n u(n) – (1/4) n u(n)