if |x[n]| < Bx then |y[n]| < ∞ As the output and input of an LTI is related by convolution, we have: y[n] = h[n] * x[n] = x[n-m] <∞ and |y[n]| = | x[n-m]| Bx h[m]| <∞ which obviously requires: h[m]| <∞ |
y[n] = h[n] * x[n] - Y(z) = H(z) X(z) When the input is the eigenfunction of all LTI system, i.e x[n] = e sn = z n |
y[n] = O[z n] = h[n] * z n = H(z) z n |
X(z) = z-n |
Time Shift x(n) -> X(z) x(n-1) => z -k X(z) + z -k+1 x(-1) + --------------+ z-1 x(-k+1) + x(-k) x(n) X(z) x(n-1) -> Y(z) Y(z) = (n-1) z -n Let n-1=m Y(z) = (m) z m+1 Y(z) = x(-1) + z -1 z -m x(n-1) - z-1 X(z) + x(-1) x(n-2) -> z -2 X(z) + z-1 x(-1) + x(-2) Final Value Theorem x(∞) = lim n->∞ (1-z-1) X(z) Final value and initial value theorems are valid only for causal and stable system. x(n +1) -> z X(z) – z x(0) x(n) -> X(z) z -n = z X(z) – z x(0) x(n) X(z) X(z) = z -n Subtracting these two equations z -n - z -n = (z-1) X(z) – z x(0) Taking the limit as - = lim z->∞(z-1) X(z) Let us expand the LHS os the above equation as n->∞ x(∞) = lim n->∞ (1-z-1) X(z) or x(∞) = lim n->∞ (z-1) X(z) Initial Value Theorem x(n) -> X(z) x(0) = lim z-> ∞ X(z) X(z) = z -n X(z) = x(0) + x(1)/z+x(2)/z2 +-------- Lim z->∞ X(z) = x(0) |
y(n) = - ¾ y(n-1) + 1/8 y(n-2) = x(n) y(n) - ¾ y(n-1) + 1/8 y(n-2) = x(n) Taking z-transform on both sides we get Y(z) – ¾ [ z-1 Y(z) + y(-1) ] +1/8 [ z-2 Y(z) + z-1 y(-1)+y(-2)] = X(z) Substituting y(-1)=y(-2)= 0 Y(z) -3/4 z-1 Y(z) + 1/8 z-2 Y(z) = X(z)
Y(z) = 1____________ 1- ¾ z-1 + 1/8 z-2 Impulse response x(n) = X(z) =1
Y(z) = 1____________ = 1____________ 1- ¾ z-1 + 1/8 z-2 1- ¾ z-1 + 1/8 z-2
Y(z) = z__________ = A___ + B__ X(z) (z-1/2)(z-1/4) (z-1/2) (z-1/4) By solving A=2 and B=-1. Y(z) = 2 z - z z-1/2 (z-1/4) y(n) = 2 (1/2)n u(n) – (1/4) n u(n). |
n) = u(n) X(z) = z/z-1
Y(z) = 1_______ X(z) 1-3/4 z-1 + 1/8 z-2 Y(z) = z z2___________ z-1 z2 -3/4 z +1/8 Y(z) = z2___________ z z2 -3/4 z +1/8 Y(z) = z2___________ z (z-1)(z-1/2)(z-3/4)
= A + B + C z-1 z-1/2 z- 1/4
By solving A=8/3 B= -2 C= 1/3 Therefore Y(z) = 8 . z -2 z + 1/3 z 3 z-1 z-1/2 z-1/4 y(n) = 8/3 u(n) – 2(1/2)n u(n) +1/3 (1/4) n u(n) |
X+(z) = z -n = 7 + 3 z -1 + z -3 + 2 z -4 + 6 z -5 |