Q 1 a) If y=A cos (log x) + B sin (log x), Show that x2yn+2 +(2n+1) * yn+1 + (n2 + 1) yn=0 where yn= dny/dxn If y = Acos(logx) + Bsin(logx) ------------(1) Differentiating (1) w.r.t x, we get y1 = -asin(logx)1/x + bcos(logx)1/x xy1 = -asin(logx) + bcos(logx) ------------(2) Diff 2 again w.r.t x, then we get xy2 + y1 = -acos(logx)1/x - bsin(logx)1/x x2y2 + xy1 = -[acos(logx) + bsin(logx)] x2y2 + xy1 = -y y2x2 + y1x + y = 0 ----------------------------(3) Diff 3 by Leibnitzle theorem n times, we get [ yn+2x2 + nc1 yn+12x + nc2 yn.2 ] + [ yn+1x + nc1 yn-1] + yn = 0 x2yn+2 + 2nxyn+1 + xyn+1 +n(n-1)yn + nyn + yn = 0 x2yn+2 + (2n+1)xyn+1 + (n2+1)yn = 0
|
Q2 a) Show that the following function is continuous at the point (0,0):
f(x,y) , (x,y) != (0,0)
0 , (x,y) = (0,0)
Answer:
f(x,y) , (x,y) != (0,0)
0 , (x,y) = (0,0)
0 < = | | < = + = 0
0 < = + = 2 | x | + 3 | y |
lt(x,y)-->(0,0) 2 | x | + 3 | y | = 0 ∴ by the squeez theorem,, we conclude that lt(x,y)-->(0,0) f(x,y) = (0,0) that is => lt(x,y)-->(0,0) = 0 ∴ f is continous at (0,0)
|
Q2 b) If z(x+y) = x2 + y2 show that (- )2 = 4(1--) solution: z(x+y) = x2 + y2 z = = =
= = (- ) = = = (- )2 = -----------------------------------------------------------1 4(1--) = 4 [ 1 - - ] = ---------------------------------------------------2 From 1 & 2 (- )2 = 4(1--) |
Q3 a)Transform the equation + = 0 into polar coordinates. Solution: we have x = rcosθ , y = rsinθ r2 = x2 + y2 , θ = tan-1y/x = . + . => (cos θ ) - = () = ( cosθ - .) ( cosθ - ) = cosθ( cosθ- ()) - .( cosθ- ) = cosθ( cosθ+ - .) - ( - sinθ+ cosθ-- ) = cos2 θ+ - +- + + = cos2 θ+ 2- 2 + + ----------------------------------------------------------------(1) = = + = y/r + = sinθ + == () = (sinθ + )( sinθ+)
= sinθ(sinθ + ) + ( sinθ+ ) = sinθ[ sinθ- + + ] + [ cosθ [+ sinθ- + ] = sin2θ- + + () + () - + () = sin2θ- 2+2+ () + () -----------------------------------------------------------(2) By adding 1 & 2 + = (sin2θ+cos2θ)+(sin2θ+cos2θ)1/r+ (sin2θ+cos2θ)1/r2
= (+ 1/r+1/r2) ans
|
Q4 Find the extreme values of f( x,y ,z) = 2x+3y+z, such that x2+y2=5 and x+z=1 f(x,y,z) = 2x + 3y + z ----------------------(1) f(x,y) = (x2 + y2) - 5 -----------------(2) y(x,z) = x+z-1 ------------------(3) Lagranges Multipliers Equations are + λ + m = 0 + λ + m = 0 + λ + m = 0 2 + λ(2x) + m(1) = 0 ------------(4) 3 + λ(2y) + m(0) = 0 ------------(5) 1 + λ(0) + m(1) = 0 ------------(6) => m = -1 putting the values of m in (4) and (5), we get 2 + 2λx – 1 = 0 => 2λx = -1 , x = - 3 + 2λy = 0 => 2λy = -3 , y = - putting the values of x,y in x2 + y2 = 5 , we get + = 5 => = 5 2λ2 = 1 => λ = +- we know that , x = - = +- = +- y = - = +-+- From (3) , x+z =1 or z = 1-x z = 1+- putting x = , y = and z = 1 - in equation (1), we get f = + + 1 - = + 1 = 5Ö2 + 1 putting x = -, y = -and z = 1 + in equation (1), we get f = 2+ 3 + ( 1 + ) = - - +1 + f = 1 – 6 Ö2 ans
|
Q5 Evaluate òòs F.n.ds where F = 4xz i^ + y2ĵ + yzk^ and S is surface of the cube bounded by x=0, y=1, z=0 , z=1, by using Gauss divergence theorem
òòs F¯ n^ ds = òòOABC F¯ n^ ds + òòDEFG F¯ n^ ds + òòOAFG F¯ n^ ds + òòBCDE F¯ n^ ds + òòABEF F¯ n^ ds +
òòOCDG F¯ n^ ds -----------------------------------(1)
òòOABC F¯ n^ ds = òòOABC (4xz i^ + y2ĵ + yzk^)(-k)dxdy
= (as z = 0)
òòDEFG (4xz i^ + y2ĵ + yzk^)(k)dxdy = òòDEFG yzdxdy = = [x]0-1 = 1/2
òòOAFG (4xz i^ + y2ĵ + yzk^)(-j^)dxdz = òòOAFG y2dxdz = 6 (as y =0 ) òòBCDE(4xz i^ + y2ĵ + yzk^)(j^)dxdz = òòBCDE (-y2)dxdz -= (x)0-1(z)0-1 = -1 ( as y = 1) òòABEF (4xz i^ + y2ĵ + yzk^).i^ dydz = òò4xzdydz ==> 4(y)0-1 = 4 (1) = 2
òòOCDG(4xz i^ + y2ĵ + yzk^)(-i^) dydz = = 0 ( as x = 0 ) on putting these values in (1), we get òòs F¯ n^ ds = 0 + 1/2 + 6 -1 + 2 + 0 => 3/2
Q 6 (a) Evaluate {A*{ B * C }} i^ ĵ k^ (B*C) = cosq -sinq -3 2 3 -1 = i^ (sinq + 9) – ĵ (-cosq + 6) + k^ (3cosq + 2sinq) i^ ĵ k^ A*( B * C ) = sinq cosq Q (sinq + 9) (cosq - 6) (3cosq + 2sinq)
= i^[cosq(3cosq + 2sinq) - q(cosq – 6)] - ĵ[sinq(3cosq + 2sinq) - q(sinq + 9)] + k^[sinq(cosq – 6) - cosq (sinq + 9)] at q = 0 => i^[cos0(3cos0 + 2sin0) - 0(cos0 – 6)] - ĵ[sin0(3cos0 + 2sin0) - 0(sin0 + 9)] - ĵ[sin0(3cos0 + 2sin0) - 0(sin0 + 9)] => 3i^ - 9k^ ans |
Q 6 A particle moves along the curve x=t3 + 1, y=t2, z= 2t+5 where t is the time. Find the components of the velocity and acceleration at t=1 in the direction i+j+3k
x = t3 + 1 , y = t3 , z = 2t + 5 ¯r = xi^ + yĵ + zk^ ¯r = (t3 + 1)i^ + (t3)ĵ + (2t + 5)k^ velocity = = 3t2 i^ + 2tĵ + 2k^ when t = 1, we have , = 3 i^ + 2ĵ + 2k^ unit velocity along ( i^ + ĵ + 3k^) = ( i^ + ĵ + 3k^) / Ö (1 + 1 + 9) = ( i^ + ĵ + 3k^) component of velocity (3 i^ + 2ĵ + 2k^) along ( i^ + ĵ + 3k^) = (3 i^ + 2ĵ + 2k^) . ( i^ + ĵ + 3k^) = (3+2+6) = = Ö11 ans
|
Q7 (a) Solve by the method of variation of parameters + n2y = sec nx solution: - (D2 + n2)y = sec nx m2 + n2 = 0 => m = +- ni cf = c1cosnx + c2sinnx y = A'cosnx + B'sinnx -----------------(I) by diff. Equation (1) (-nA'sinnx + B'ncosnx = secnx) -------------(II) Now multiplying by nsinx in equation (I) & multiplying by cosx in equation (II) nsinnx(A'cosnx + B'sinnx = 0) cosnx(-nA'sinnx + B'ncosnx = secnx) A' nsinnx cosnx + B' nsin2 nx = 0 - A' nsinnx cosnx + B' ncos2 nx = 1 ----------------------------------------------------- nB' (sin2nx + cos2nx) = 1 B' = = dB =
A'cosnx + B'sinnx = 0 A'cosnx + sinnx = 0 A' = - = - tan nx òdA = -ò tan nx dx + C2 A = -log sec nx + C2 y = [-log sec nx + C2 ] cos nx + ( + C1)sin nx
|
Q 7 (b) solve - 2 tanx + 5y = sec x. ex - 2 tanx + 5y = sin x. ex y'' – 2 tan xy' + 5y = sin x. ex compare with y'' + 8y' + qy = R p = -2tanx , q = 6, R = sin x. ex for C.F µ = e-1/2òpdx q1 = q - - R1 = µ = e-1/2ò-2tanx dx = elog secx = sec x q1 = 5 -(-2tanx)- = 5 + sec2x – tan2x = 6 R1 = + q1v = R1 (D2 + 6)v = A.E = m2 + 6 =0 => m2 = -6 => m = +- 6i CF = (C1cos6x + C2sin6x) P.I = => (sin x. ex) = sin x = sin x => sin x = sin x => sin x = sin x => sin x = (D-3)sin x => (Dsin x – 3 sin x) = (cos x – 3 sin x) C.S = (C1 cos 6x + C2 sin6x) -(cos x – 3 sin x |